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Abstract 
In construction of machines more and more often are used materials called hyper-elastic, for example: foam 

structures, materials based on natural and synthetic rubbers and other materials subjecting large deformations. The 
porous structures are produced on the basis of different synthetic materials, thermoplastic polymers and 
thermosetting. Subject of porous materials is studied by many scientists around the world. Porous materials (also 
called cellular plastics, foam plastics or foamed plastics) include gas phase dispersed in a solid phase of polymeric 
material. Properties of such systems depends on the properties of the polymer warp and cell structure, comprising the 
gas phase. Approach previously used to anticipate and interpreting the behaviour of the hyper-deformable structures, 
which use the theory of hyperelastic materials, does not resolve the issue because it only describes the elastic 
properties. The article presents an original methodology developed structural identification the viscoelastic properties  
of hyperdeformable materials, and in particular modern construction materials from the group of plastics and 
composites of elastomers, foams, etc. The aim of the article was an oscillation analysis in systems from elements  
of incompressible and the description of phenomena setting in during of work of suchlike systems. 
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1. Elastomers 
 

This article aim to analyse vibrations in systems where there are elements of elastomer. In the 
analysis were used the assumptions used in the theory of hyperelastic materials [1] – elastomer is 
isotropic incompressible material with very large reversible deformations. It is the theory of finite 
deformations – on the major directions was assumed deformations (1):  
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Hooke’s law in the form of (2):  
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introduced designations (3):  
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The assumption of incompressible material leads to the conclusion that the Poisson’s ratio is 
fixed at 1/2, it mean that in the entire body is a homogeneous condition: stress – hydrostatic 
pressure on values in accordance with dependence (4): 
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The volume of the body is the same; it means that the product of deformation λ is always 
equals 1 according to (5): 

 1 2 3 1λ λ λ = . (5) 

Using the above dependence, we are known with the theory of hyperelastic materials, 
subjection (6): 
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in which  σnom it is a nominal stress, acting strength we referring to the initial section.  
The dependence represented by the formula (6) is the known theory of hyperelastic material 

and is often used – including in the description of experimental polymers creep [11]. It is  
a strongly nonlinear dependence – in Fig. 1 is a graph of σ–λ expected range of items work in this 
type of material – a deflection to half-length. For comparison, the dotted line represents a linear 
relationship.  

 

 
Fig. 1. σ–λ in the expected range of work 

 
2. Scheme of oscillations 
 

Let us consider the vibration in the arrangement illustrated in Fig. 2. It was assumed that the 
material properties are described as a parallel connection model nonlinear elasticity described as 
hyper-elastic materials and viscous damping – Fig. 3. 
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Fig. 2. Ideological notion of question 

 

 
Fig. 3. Material model analyses 

 
This model is analogous to the Kelvin-Voight model with non-linear elasticity. In order to 

determine the dimensional equations of vibration multiply the relation (6) through cross-sectional 
area and in the base equation (7):  

 1
x l

l
λ +

= , (7) 

resulting from the dependence (8):  

 1 1 1λ ε= + . (8) 

We get (9): 
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that is we can at last record in equation such (10): 
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We receive the equation of oscillation in form (11):  

 
3

2 ( )
( )

lm x c x k x l F t
x l

 
+ + + − = 

+ 
  . (11) 

The coefficient of stiffness was marked as (12): 
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Equation (11) has a highly non-linear in nature resulting from the occurrence of the deno-
minator exponential. The nature of vibration of this kind has not yet been described in vibration 
theory – his term requires the use of numerical methods. In order to derive the parameters 
describing the model – stiffness and damping performed experimental studies involving the 
compression of the cylindrical sample made of a rubber elastomer cross-linked. Characteristic σ = 
= f (ε) the grid elastomer of natural rubber – free grip was shown in Fig. 4. 

 

 
Fig. 4. Characteristic σ = f (ε) the grid elastomer of natural rubber – free grip 

 
3. Characteristics of experimental studies 
 

The samples were prepared in the shape of a cylinder with a diameter of 23.5 mm and  
a thickness of 10 mm. The materials were tested using appropriate standards for extremely diffe-
rent operating states: the nominal operating temperature +23°C (hard forced elasticity) and glassy 
brittle: –15°C, different speed ranges, e.g. 1 mm/min and 1 mm/s, 6 mm/s. Attempts to research  
I made for compression: free and limited, compression with the force of cyclically variable. 

Figure 4 shows the pronounced asymmetry of the hysteresis loop – back after the initial inten-
sity of the load is greater than the initial load intensity. This phenomenon is non-linear viscoelastic 
polymeric materials found in [1]. The occurrence of such a phenomenon is confirmed by a series 
of experiments – the first made in the sixties of the last century by Landeman [2]. First, using the 
load line in Fig. 3, which is practically easy to define the value E of 2.71 MPa, further assuming  
l = 1, A = 0.01 m2, we obtain k = 9034 N/m. This value was used for analysis of vibration in the 
system described by equation (11). Assumed: mass m = 0.1 kg, extortion corresponding to work of 
material, in which the test was performed. In view of the above, for the compression accepted (13): 

 0( ) sinF t F t Fν= − , (13) 

where F0 = 200.  
First constructed undamped vibrations assuming C = 0. 
The calculations were made using the software package to support math MATHEMATICA  

v. 7.0. 
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It has been found that the oscillations are non-linear in nature – are phenomena typical of the 
nonlinear oscillation amplitude of forced vibrations undamped is over, the highest values occur at 
much consideration of frequency offset relative to the value. The resonant graph shown in Fig. 5. 

 

 
Fig. 5. The amplitude of forced vibration of harmonic oscillator in the dependence from of force input function 

frequency 
 
To determine the level of attenuation used in the graph of the hysteresis loop shown in Fig. 4, 

due to the different viscoelastic properties of the sections of the loading and unloading adopted 
non-linear relationship as a function of speed. The equation analysis was (14) [15]:  
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where: J = 1 for 0x > , or J = 0 for 0x ≤ .  
Was developed an additional program to simulate the compression tests in which data is 

entered as damping coefficients C1 and C01, is determined hysteresis loop. The coefficients C1 and 
C01 are variable up to the deletion area of the loop, such as obtained in the experimental studies. 
Value was received: C1 = 0.9 N·s/m, C01 = 5 N·s/m.  

Figure 6 and 7 shows the analysis results for the initial conditions: initial time: tp = 0, final 
time: tk = 0.12 s, period: T = 0.005 s, C = 0 (tp = 0, tk = 0.12 s, T = 0.001 s, damping ratio: C1 = 0.9,  
C01 = 5); a) – the change of strength in time, b) – the dislocation in time, c) – the change of speed 
in time, d) – the speed in function the dislocation.  

The resonance curve of damped oscillations was introduced in Fig. 5 by dashed line. The 
dissipation level (the dispersion of energy) in the grid elastomer of natural rubber is considerable – 
resonance strengthener steps out is small (Fig. 5). 
 
4. Conclusion 
 

The study presents method for the analysis of vibration in a visco elastic element of incom-
pressible hyper-elastic material. 
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Fig. 6. Result analyse for initial conditions: tp = 0, tk =0.12 s, T = 0.005 s, C = 0 
 

It has been found that the oscillations are highly nonlinear nature of the resonance frequency  
is lower than the frequency of their own circuit. The measured level of attenuation in the material 
is significant – there is a strong reducing vibration. 
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Fig. 7. Result analyse for initial conditions: tp = 0, tk =0.12 s, T = 0.001 s, C1 = 0.9, C01 = 5 
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