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Abstract

Aeroelastic phenomena should be considered during the design phase of long span bridges. One of the aeroelastic
problems is flutter, the dynamic instability that may cause structural failure at a wind speed called the flutter speed.
The prediction of flutter speed of a bridge needs a thorough modelling of bridge stiffness, inertias, and especially its
unsteady aerodynamic forces. The potential flow theory is not applicable to calculate unsteady aerodynamics of
oscillating bridges due to their non-streamlined complex geometry, and the non-avoidable flow separation. For these
reasons, a semi empirical model proposed by Scanlan is used to describe unsteady aerodynamic forces on an
oscillating bridge deck. In this model, relation between unsteady aerodynamic forces and motion of the bridge is
modelled using parameters known as flutter derivatives. The values of flutter derivatives can be identified from the
free vibration responses of an elastic bridge at several wind-speeds. This paper presents wind tunnel tests and flutter
derivatives identification of a sectional aeroelastic bridge model. Modified Ibrahim Time Domain method was applied
to identify the eigenvalues and eigenvectors of the model at each wind speed, from which the flutter derivatives can be
calculated. The results show that the measurement procedure is able produce flutter derivatives, which are in good
agreement with those obtained by other researchers.
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1. Introduction

Study of bridge aeroelasticity is needed during the design phase of long span bridges. One
phenomenon that should be considered is the flutter, an unstable self-excited vibration in which
the structure extracts energy from the air stream. Below the critical speed, the motions of the
structure are damped out, whereas above the critical speed, the motions are unstable since the
damping of the system is negative. This phenomenon can lead to a catastrophic failure, such as the
failure of Tacoma Narrows Bridge as shown in Fig. 1 [1, 2].

Fig. 1. Flutter of Tacoma Narrow Bridge
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Flutter phenomena can be investigated by using analytical, experimental, and numerical methods.
For bridge decks with complex geometry, analytical and numerical methods lead to complex
mathematical forms. Therefore, predictions of the flutter speed of the bridges should be verified
using wind-tunnel tests, either for full bridge model or for partial model of the bridge [3, 4]. For
preliminary study, the numerical analysis can be carried out by formulating the unsteady
aerodynamic forces using experimental data. This paper presents the measurement of the unsteady
aerodynamic coefficients, or the flutter derivatives, of a bridge deck sectional model.

2. Theory
2.1. Bridge Aeroelastic Model

Figure 2 shows a model of an oscillating bridge sectional model in wind stream with c.g. at the
middle position. The model is supported by linear and torsional spring, k» and k.. The equation of
motion of the model in the vertical and rotational motion, 4 () and o(¢) respectively is:

o et s 2Rl Klal »

where L, M, are the aerodynamic force and moment working on the bridge deck. In aeroelastic
instability analysis, only motion dependent aerodynamic forces are considered. The aerodynamic
force and moment can be related to the motion of the bridge as follow [5]:

L= ouB| k() ki) BE 4 k2 (K + K2HL(K) L |

2 U U B
(2)
M= % pUzB{KAf(K)g+ KAQ‘(K)% K24 (K)a + KZAZ(K)%}

where: p — air density, U — mean wind velocity, B — chord, @ — frequency, K =B @/U — reduced
frequency and H; (K ),A; (K),i =1,...,4: flutter derivatives. The flutter derivatives of a body that
represents a thin plate can be obtained from the formula developed by Theodorsen [6]. For a bluff
body, they are obtained from wind tunnel tests.

L < —Fs > ——

Fig. 2. Bridge deck sectional model and its displacement

By substituting Eq. (2) into Eq. (1), and mathematically manipulating the result, a normalized
aeroelastic equation of motion of the bridge model can be obtained:

IX+C¥x+K9x=0, 3)

where:
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The parameters of the aeroelastic model can experimentally be determined. First, its free vibration
responses at several wind speeds (including zero) are measured, from which the frequencies,
dampings, and mode shapes of the model are identified. Then, the C¥ and K¢ matrices are
reconstructed. The flutter derivatives at a wind speed are calculated from the difference between
C% and K¢ at the wind speed to those without wind by as follow:

H{(K) ==2m(C] = C) [(pB*an),
H3(K) ==2m(C{ - C) (pBw,),
H3(K)=-2m (Kle{f ~K5) (pBwg),
Hi(K)=-2m(K{{ —K}) (pB*w}),
AN(K)==21(C5] = C) (pBan),
A3 (K) = =21(C5) = C3)) [(pB@q),
A (K) =21 (K5) = K9)/(pB*@z),
A (K) = 21(K5] - K9) [(pBap).

(4)

2.2 Identification of model dynamic characteristics

The eigenvalues and eigenvectors of the model are identified from its free vibration response
by using Modified Ibrahim Time Domain (MITD) method [7, 8], which is a recursive procedure
based on the Ibrahim Time Domain (ITD) method [9].

ITD Method

Figure 3 illustrates the measured free vibrations data in the form of the vertical and the rotational
displacements sampled with a time step At. Theoretically, the free vibration response can be modelled
as the superposition of vibrations at two frequencies, each at its mode shape:

X(0) =[h(t) O] =Y Bupue™ (5)

where:
Pn — constants to satisfy the initial conditions,
pm — vibration mode shapes,

A, = a, +ib, =, w, +io,/1-{> — complex natural frequencies, A, =4, 4, = ;.
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Fig. 3. Measured data and data sets for identification

For ITD method, four data sets of equal size are obtained from the measured data, as illustrated
in Fig. 3. The first data set contains N data points, the second data set is obtained by shifting first
data set to the right by Vi, the third and fourth data sets are obtained by shifting the first and second
data to the right by N2. The shift factors Ni and N2 are determined by following Sarkar [7]:

N =1/(4At f;), N,=N,*lor2, (6)

where fz is the highest frequency of the system.
The procedure described previously provides 4 data sets as follow:

[h(l) h(N)}

1=

a(l) ... a(N)

Xzz_h(1+N) h(N+N1)}
:a(1+N) e. a(N+Ny) ™

X, - h(1+Ny) ... h(N+N2)}
la(l1+Ny) ... a(N+N,)

X4:_h(1+Nl+N2) h(N+N1+N2)}
la(l+Ni+Nzy) ... a(N+N+Ns)

Following Eq. (5), each data set can be modelled as:
X;=PA;; Xo=PAy; X;3=PA;s; X4=PAy4, (8)

where:

P_|:ﬂ1p11 Bopii B Papa

} — 2x4 modal matrix,
Bip2 Bapa Bipn Pipn

O pAN-DA
A= : — 4xN spectral matrix of the system,
b ... eMIN-DA
B ANAL SA(NHNI-DAY cANA () 0 L gAN-DA
A2= = 0 0 :AN1A19
MMM (NN 0 0 MM |0 pAa(N-DAr
B eMNaAr GA (N2 N-DAL N () N0 GA(N-DA
A3= = 0 0 :ANzAla
N (N N-DA 0 0 oMb || g0 pa(N-Dar
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By using the relation between the spectral matrices, Eq. (8) can be written as:

X, =PA,,
Xy =PA; =PAy A1 =QAy,

X; =PA; =PAy A,

Xs =PA, =PAy Ay, A =QAyA,.

)

Data sets X1 and X2 can be combined as a single equation, and also the data sets X3 and Xa:

NS P
X, Q X4 Q

By substituting A1 obtained from the first combination into the second one, and after some
mathematical manipulation, an eigenvalues problem is obtained:

[EHEHB}ANB} or A¥=WA,,, (1

where A=Z"7Z, Z=[X; XoI’', Z=[X; X4 and¥=[P QF.

Solutions of Eq.(11) are eigenvectors and eigenvalues matrices, ¥ and Ay, . The complex mode
shape matrix P is the upper half of ¥. By assuming that the m™ eigenvalue is in the form of Ay, =
= am + [, the damping factor and the damped natural frequency of Eq. (5) can be calculated as:

Ay =y =—In(al + B2)/(2N,At) and b, = w1 -2 =tan™' (B, / an) (N2AL).  (12)

When Z and Z in Eq.(11) are non-square matrices, the inverse procedure leads to the pseudo-
inverse technique and gives the least squares equivalent in two forms which are known as a positive
shift A* =(ZZ")(ZZ")™'] and a negative time shift A~ =(ZZ")(ZZ")']. A better estimation of
the damping factor can be obtained by averaging both equations, i.e. A =4(A"+A").

MITD Method _

By using the parameters obtained from ITD method, responses of bridge deck X =[A(¢) a(¢)]"
can be simulated according to Eq.(5). Following the data preparation procedure in ITD method, 4
data sets can be built from the simulation results, which can be combined into two variables:

1) ... h(N) h(Na+1) ...  h(N,+N)

Zo| @O @) | s | @) @) |
h(1+N1) h(N+N1) h(N2+N1+1) h(N2+N1+N)
a(l+Ny) ... a(N+Ny) a(N,+N+1) ... a(N,+N;+N)

By combining experimental and simulation data, the A matrix can be built using average scheme:
A=L(A"+ A =L[(ZZTYZLTY ' +(ZZTY(ZZ) ™). (14)

The results of eigenvalue analysis can be used to simulate response of the system. The
identification procedure by using the combination of the measured and simulated response is
repeated until the eigenvalues and eigenvectors are convergent.
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2.3. Reconstruction of K¢ and C¢

The responses simulated from the identification results can be written in state space model:
y =Gy, (15)

where y =[x” X"1" =[h(t) a(t) h(t) a()]" and G—{ 0 ! }
Y= - - —_K _Ceﬂ' :

With 0 — 2x2 zero matrix, I — 2x2 identity matrix, C%" and K¢ — the effective damping and
stiffness matrices described in Eq. (3). Solution of Eq.(15) can be written as:

4

YO =" (Bavae). (16)
By comparing equation (16) with equation (5), the m™ eigenvector is given by:

Y, = { P } : (17)
Am Pm

The modal matrix in state-space domain can be expressed as:

V=oal=| (18)

=V, vam] = :
I 2 PA

Therefore, the state matrix can be calculated from the modal matrix in state-space domain:

G(1) G(,2)
G2, G(2,2)

Hence, the effective damping and stiffness of the system are:

K% =-G(2,1) and C¥% =-G(2,2). (20)

= VAV, (19)

3. Experiment Procedure

The experiment was carried out in the aeroelastic wind tunnel, at the Dept.of Aeronautics and
Astronautics of ITB, with test section length of 1180 mm and cross section of 400 mmx400 mm.
The model has a span of 350 mm, chord length of 300 mm, and thickness of 25 mm. The model
was suspended in the test section with practically 8 identical springs as shown in Fig. 4 [9]. The
stiffness of each spring was selected by considering the vertical natural frequency. The chord-wise
distance between springs were adjusted by considering the rotational natural frequency. Frequency
tuning of the model was also performed by symmetrically adding 4 identical masses inside the
model, and adjusting their chord-wise distance. The vertical and rotational natural frequency of the
model are 4.5 Hz and 6.5 Hz, respectively.

Two B&K 4371 accelerometers were installed inside the model to measure the front and aft
responses at mid span position. The B&K 2525 conditioning amplifiers integrated the acceleration
signals twice into the displacement signals. A data acquisition system sampled the data at rate of
1000 Hz. The two displacement signals were then filtered and manipulated into vertical and rotational
motion of the bridge at its c.g. Measurement of bridge response due to an initial displacement
disturbance were carried out at 18 wind speeds from 0 m/s to 10 m/s. At each wind speed, three
measurements were carried out.

From the data of vertical and rotational motion of the bridge, the eigenvalues and eigenvectors
of the model at each wind-speed were identified by using MITD method. The effectiveness of the
MITD method can be seen in Fig. 5, where simulation of the displacement signal using results of
this method are very close to the measured data than that of ITD.
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Fig. 5. Simulations of measured vertical displacement data using (a) ITD method (b) MITD method

0

After the eigenvalues and eigenvectors of the system at each wind speed were identified, the
effective stiffness and damping matrix of the model then were calculated using Eq. (17)-(20).
Finally, the flutter derivatives were determined by using Eq. (4).

4. Results and Analysis

The identification procedure was applied to the displacement signals at each wind speed. The
real and imaginer part of the eigenvalues, which correspond to the damping and the damped natural
frequencies are presented in Fig. 6. From three measurements at each wind speed, the identified
natural frequencies are practically similar, but the dampings are rather scattered especially at higher
wind speeds. The average of the real and imaginer parts of the eigenvalues are shown in Fig. 6 as
solid and dashed lines for the rotational and vertical motion. It can be seen that with increasing
wind speed, the rotational and vertical natural frequency become closer. The vertical motion damping
increases with increasing wind speed, however, the rotational motion damping increases up to
about 7.5 m/s and then it decreases. This is the typical characteristic of an aeroelastic system with
unstable rotational mode.

From the eigenvalues and eigenvectors of the system, the effective stiffness and damping
matrices were reconstructed and flutter derivatives were determined. The results are shown in
Fig. 7, where they are compared to theoretical flutter derivatives of a flat plate of similar planform
size. It can be seen that at lower wind speeds the measured , , H>, and H; are similar to those of
the thin plate, while at higher speeds their values are different from but their trends are similar to
those of the thin plate. The measured H; has different values and trend from that of the thin plate
for all wind speeds.
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Fig. 6. Imaginer and real eigenvalues (natural frequency and damping) of the model from the three measurements.
The averaged data is shown in solid line for rotational motion and dashed line for vertical motion
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Fig. 7. H" and A" derivatives of the bridge model at several wind speeds

The Hj is related to the changes in K11 or to changes in vertical frequency (Eq. 3 and Eq. 4).
Fig. 6 shows that vertical frequencies change only slightly compared to the torsional frequencies.
Hence the determination of Hj is sensitive to the error in the measurement. Gu [10] also had
similar results and pointed out that identification of Hy is difficult and very sensitive to noise.

Figure 7 shows that at lower wind speeds the measured 4" derivatives are similar to those of
a thin plate. At higher wind speeds, compared to flutter derivatives of a the thin plate, the values of
the measured 4™ are different but the trends are similar. Except for the 4; that has different values
and trend from that of the thin plate.

The results are also compared to results of Li [11] who identified the flutter derivatives using
the Weighting Ensemble Least-Squares method (WELS). The model tested by Liu has a similar
cross section but different mechanical and geometrical parameters. Therefore the flutter derivatives
are presented as the function of reduced velocity, U/(f B), as shown in Fig. 8 and Fig. 9. It can be
seen that current results are in good agreements with those of Li, especially at low reduced
velocity. At high reduced velocity, the measured H3and H; are different from those of Li.

5. Conclusions
Measurement of the flutter derivatives to a bridge section model provides results that are in
good agreements with theoretical flutter derivatives of thin plate, especially at low wind speeds. At

higher speeds the agreement is less, however, the trends between the measured data and the theoretical
values is the same, except for the measured H; and H .
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Fig. 9. Comparison of measured A* derivatives (upper row) with those measured by Li [11] (lower row)

The measurement procedure can be used to obtain flutter derivatives of bridge sectional model
of other geometries, but the test setup should be improved to get better results at high wind speeds.
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