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Abstract

In this paper, two different classes of lubricant flow conditions are basically indicated, i.e. for periodic solutions
when pressure values and other flow parameters change periodically and for non-periodic solutions in the case of
lubricating in the conditions of impulses and strokes. The Authors formulate the primary problem in the form of a system
of 9 nonlinear non-homogeneous partial differential equations with variable and random coefficients in a curvilinear
orthogonal system of coordinates which is supplemented with suitable constitutive dependences and conjugated with
magnetic field equations with the Ohm equation. These equations include the following: three conservation equations of
the lubricating liquid momentum, the stream continuity equation, the energy conservation equation, three equilibrium
equations of the thin elastic superficial layer that are reduced to the differential equation in displacements, the heat
transfer equation of the superficial layer that is flown around by the lubricating liquid. The following include those
equations that describe constitutive dependences the Rivlin-Ericksen equation of physical dependences for viscoelastic
ferrofluid, the equation of the physical dependences of the superficial layer of the surfaces lubricated, the equation of the
physical dependences of the magnetic field. The unknown values of the material coefficients shall be determined
experimentally. The following 9 unknowns are determined from the system of partial differential equations: three velocity
components of the lubricating liquid, the hydrodynamic pressure, the temperature in the lubricating liquid, the three
components of the superficial layer displacement and the temperature in the superficial layer. The mathematical solution
of the problem presented requires a number of boundary conditions to be imposed. The Authors foresee quasi-analytical
solutions of the system described of partial differential equations.

Keywords: injury solutions, periodic solutions, theory of lubrication, partial differential equations
1. Some introduction remarks

The problem method of impulsive and periodic solution of lubrication problem had been
considered already in Authors papers [2, 4]. In mentioned considerations, the computational model
had been not accommodated to the curvilinear coordinates in non-isothermal magnetic flow and
had been not coupled with the unified calculation algorithm referring to the lubricant and
deformable bearing surfaces. In contrary to the foregoing papers [2, 4] the presented paper utilizes
a new unified calculation algorithm for Rivlin-Ericksen viscoelastic oil properties in electro-
magnetic field connected with stochastic changes of flow parameters [1-6]. Such algorithm
satisfies stability conditions of numerical solutions of partial differential equations and gives real
values of fluid velocity components and carrying capacities occurring in journal bearing.
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In this paper is presented a semi analytical method of solution of the asymmetrical, laminar,
unsteady periodic and impulsive, non-Newtonian lubrication problem flow between two non-
rotational and rotational, movable surfaces. The parallel and longitudinal intersections of
mentioned surfaces are curvilinear and non-monotone in general. The solutions are made in local
curvilinear and orthogonal coordinate system (o, o, o3) connected with the one of movable
surfaces, where o, denote the direction of hap height.

The fluid apparent fluid viscosity n, is variable in (o, o, o3) directions and depends on
pressure, temperature and flow shear ratio.

2. General basic equations for elasto-hydro-electro-magnetic conjugated mechanical fields

The results of the applied mathematical achievements are demonstrated in the form of semi
analytical and numerical methods of approximate solutions of the set of 16 partial second order,
non-linear, inhomogeneous differential equations of elasticity, hydrodynamics and -electro-
magnetic conjugated fields described in a two and three-dimensional form. The presented method
is useful for a finite body or fluid regions of arbitrary shapes [6].

The system, which describes the electro-magneto-thermo-elasticity problem in stresses for two
solid surfaces restricting the thin fluid layer, consists of the three partial differential equations (1)
in a vector form. To this set of equations, we add the heat conductivity equation in a solid body (2)
and we obtain a system in the following form [6]:

. * * * * % 82u
DivS +J xB +,uo(N V)H :p*atza (1)
*
div(K*gradT*): p*c: or (2)

or
The fluid flow between two above mentioned solid surfaces in the electromagnetic field will be
described by the three equilibrium of momentum equations in a vector form (3), a fluid continuity

equation (4) and a conservation of energy equation in a scalar form (5), hence we obtain the
following system [3, 6]:

Div S+ u,(NV)H +%,u0r0t(N X H)+ JxB= p(grad% —V Xxrot Vj +p 2‘; ) 3)
P» ., div(pv)=0, 4)

ot
div(x grad T)+ ¢, = p%(ch)+ u,TE(VWH+J? /o, 5)

The above-mentioned system of equations is completed by Maxwell and Ohm equations as
well for two surfaces as for the thin boundary liquid layer between two surfaces. Thus, we
consider equations [3, 6]:

*

oD oD

V-B =0, V.-B=0,VxH =J +—, VxH=J+—, (6)
ot ot
VxE*:_%, VXE:—%—]?,J*ZO'*E*,JZO'(E+V><B), (7)

We assume following notations: L, — magnetic permeability in vacuum H/m, T — fluid temperature
in K, T"— solid body temperature in K, B — magnetic induction vector in T, N — magnetization vector
A/m, E — electric intensity vector V/m, H — magnetic intensity vector A/m, = — first derivative of
magnetization vector respect to temperature A/mK, o — electrical conductivity coefficient S/m,
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J — electric current density in A/m” D — electric induction vector As/m, p — fluid density kg/m’,
« — thermal conductivity coefficient W/mK, v — fluid velocity vector in m/s, ¢r — dissipation of energy
in W/m3, S — stress tensor in the fluid in Pa, u — displacement vector of the solid body in m, t — time in
s, ¢y — specific heat in J/kgK. The symbols with an asterisk related to the solid body.

Second order approximation of the general constitutive equation given by Rivlin-Ericksen can
be written in the following form [6, 7]:

S=-pl+nA, +aA} + fA,, (®)

where: p — pressure in Pa, I — the unit tensor, A;, and A, — the first two Rivlin-Ericksen tensors
and m, a, B — three material constants, where n=non; denotes dynamic viscosity in Pas, and o3
are pseudo-viscosity coefficients in Pas”.

Tensors Aj, and A, are given by symmetric matrices defined by [1, 5-7]:

ov
ot

: ©)

A=L+L", Ay=grad a+ (grad a)' + 2L"L, asL v +

where: L — tensor of fluid velocity gradient vector in s', L' — tensor for transpose of a matrix
of gradient vector of a fluid in s, a — acceleration vector m/s”. Symbol grad(a) denotes tensor of
rank two.

3. Semi-analytical series solutions

LEMMA 1

An estimation of the terms with respect to the thin layer boundary simplifications for the
equations of the conservation of the momentum, continuity, the energy equation, and constitutive
equation given by Rivlin-Ericksen formula in the curvilinear orthogonal co-ordinates (a;, c», @3)
for constant coefficients p, o, f#0, k20 {i.e. an incompressible, viscoelastic flow}, for periodic and
non-periodic solutions {i.e. time t depended, and unsymmetrical medium flow} in a thin layer
space (a; oo a3, t) between two arbitrary movable surfaces, with a non-monotonic curvature line,
lead to the following system of basic equations [6-8]:

ov; 1 op 0 N, v,
X =——2 4 iy —+ M, + 0, i=13. 10
T e n e na%] P oraar H M0 p) (10)
B 2 2
(a+25)=2 U B CCUPT - (11)
oa, [\ Oa, oa, oa,
0 0 0 0
—(ph1h3)+—(pv1h3)+—(pv2h1h3)+—(pv3hl)=0, (12)
ot oa, oa, Oa,
o ( or ov Y (ov, Y
— | K +n AT B :Z+OT(a,ﬂ), (13)
oa,\ Oa, oa, oa,

where the length, width and gap- height directions, are limited respectively: 0<a; <27, —b,,<a3=bs,
0<a,<e. The system of Eq. (10)—(13) contains the following unknowns: p(a;, cs, as,t), T(a;, o, a3,t),
vi(ay, o, a3,t) i.e. pressure, temperature, three medium velocity components for i=1,2,3 in three
curvilinear, orthogonal dimensional directions: o, o, o3 Lame coefficients are as follows:
hi(a, @3), h3(ai, a3) for non-rotational surfaces and non-monotone curvatures; hi(as), hs(as) for
rotational surfaces and its non-monotone generating lines, and h;(a;3),h;=1 for rotational surface
with monotone generating line {see [6] section 2.1.5).
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Applications: Symbols M, denote terms of electro-magnetic field influences. And we have
following one order smaller terms describing: X.; — inertia forces without local derivative of
velocity, Z — the convection transport of energy, O,, Or — the viscoelastic oil properties {see [10]
section 2.

PROOF OF LEMMA 1
The proof of Lemma 1 was performed in the Authors monograph [8] chapter 2, section 2.1,
Lemma 2.1.5.2 and in chapter 3 intersection 3.1.5.

LEMMA 2

A system of partial differential equations (10)-(13) defined in thin space (a; o a3,t) between two
rotational movable surfaces for M;=0 {without any electro- magnetic field influences} and for
continuous single valued n (o a3), {i.e. without any medium viscosity changes in gap height
direction o), for viscoelastic properties i.e.afp20, has an analytical non periodic solution in the
form of the following infinite uniform convergent functional-power series with respect to the
successive powers of f/nyt (for t >0) {available see [6, 7]}:

2
Vi(alaaZaa:ht):viO(Zaalaa:%)+£tvil(Z>al’a3)+(£tJ vi2(Z=a17a3)+"' 9 i:1’2a3' (14)

o Mo
B g\
pla,,a, :O>a3at):plo(alaa3:t)+Epll(a1aa3at)+(EJ pula,a;,0)+..., (15)
0 0
B )
T(an“za%af):Tlo(}(,ala%)+Eﬂ1(la“1,a3)+(ﬁj T (x,ap,03)+ ..., (16)
0 0
with a new variable
y=—2_ VVEU—O, t>0, 0<£<1. (17)
2\v,t P Mol

Applications: The fluid velocity components of v, Vi, Vo and pressure p i and temperature Ty for
k=0 depend on the time and the viscosity of the medium but they are independent of the
viscoelastic properties. The flow parameters for k=1,2,... describe corrections of fluid velocity
components i.e. the pressure and temperature caused by the time dependent viscoelastic properties

{available in [6, 7, 9] .

PROOF OF LEMMA 2

By substituting expressions (14)-(16) into the system of equations (10), (13) one obtains for the
first twelve unknown functions vy, v20, V30, T10, Vi1, V21, V31, T11, V12, V22, V32, T12, ... the ordinary
differential equations {[6] see chapter 4 intersection 4.1.3}. Imposing the proper boundary
conditions on the velocity components vy, V21, V22, ... We obtain the successive modified partial
differential Reynolds equations determining unknown pressure functions pj, and its corrections
pit, Piz,... {[6] chapter 4 Eq.(4.1.2), (4.1.22)}. The proof of Lemma 2 was completed in the
Authors monograph [6].

LEMMA 3

A system of partial differential equations (10)-(13) defined in thin space (a; oz a3,t) between two
movable rotational surfaces for M;=0 {without any magnetic field influences} and for continuous,
single valued n(oy o), {i.e. without any medium viscosity changes in gap height direction a;}, for
viscoelastic properties i.e.afp) has an analytical periodic solution in the form of the following
infinite uniform convergent functional power series with respect to the successive decaying
exponential functions {see [6] cf. intersection (4.3)}:
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vy, ay,a5,0) = v (ay,ay,05) + zvi(k)(al,az,a3)exp(ika)ot), =123, (18)
k=1
T(a,,a,,05,t)= 7 (a),a,,05)+ ZT(k) (a),a,,a5)expliko,t), (19)
k=1
play,ay =0,05,0) = p(a,a3)+ > p" (e, o) explika, 1) . (20)

k=1

Applications: Symbol @, denotes the frequency of vibrations in s~ and describes periodical

perturbations in an unsteady fluid flow in the gap. Symbol i=v-1 is an imaginary unit. The
unknown functions with upper index (0) describe the velocity vector components, the temperature
and the pressure for stationary non-viscoelastic fluid properties. The unknown functions with
upper index (k) for k=1,2,3,... denote corrections of the velocity vector components, the
temperature and the pressure caused by the non-stationary viscoelastic properties of the fluid
{available in [6] intersections 4.3.2, 4.3.3).

PROOF OF LEMMA 3

We put infinite series (18)-(20) into the set of equations (10)-(13) for M;=0, =0, and we
equate the terms of the same upper indexes in the same powers of exp functions. By equating the
terms with upper index (0), we obtain a sequence of the partial differential equations of motion for
Newtonian fluid properties and steady conditions. By equating the terms with upper index (1),
(2),... we obtain a sequence of partial differential equations, which determines corrections caused
by the motion for the viscoelastic fluid properties and unsteady conditions. The proof was
completed in the Authors monograph [6] section 4.3.3-7.

4. Solutions of selected stochastic partial differential equations

Now we describe the distribution of unknown function p (pressure) for the problem described
by the system of Eqgs.(11)-(15) with viscoelastic oil properties i.e.af3#0, but in the case of
n(a,00,03) {i.e. medium viscosity changes in the gap height direction o} and for stochastic

conditions. We assume that the dimensionless time depended gap height et consists of two parts
[6, 9]:

eri=eris(an, a3t +oi(an, asz &), (21)

where €75 denotes the total dimensionless nominal smooth part of the geometrical form of the thin
fluid layer. This part of the gap height contains the corrections of the gap height caused by time
deformations. Symbol 6; denotes the dimensionless random part of the gap height changes
resulting from vibrations, unsteady loading and the surface roughness measured from the nominal
mean level. Symbol & describes the random variable, which characterizes the roughness

arrangement. Expectation operator E has the following form {[6] cf. intersections 4.2.3 and 4.2.6,
[9] intersection 3.2 and [10]}:

N
¢ 1——1j for —c; <6, < +¢y,

E(x)= j@ﬂxﬂﬂ5ﬂd&,og==:E§a:0575, f,(8) = [ o

(22)
0 for |51| > ¢,

whereas: c¢; — half of the total range of dimensionless random changes for the quantity considered,
o1 — dimensional standard deviations, f, — dimensionless probability density function. The definite
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integral in interval (—oo,0) from each probability density function is always equal to unity. In
Eq.(22) is presented Pseudo-Gaussian symmetric density function. Such function presents case
where probabilities of the gap height decreases are the same as probabilities of gap height
increases. Presented theory valid for asymmetric density functions too. Now we formulate {[12]
intersection 8.4.2, [6] section 3.2}.

THEOREM 1. If continuous single valued function n(oy, ao, o) {i.e. the medium viscosity} is not
constant in the gap height direction, M;=0) {i.e. magnetic field forces are taken into
consideration}, o, f#0 {i.e. viscoelastic properties of the medium are considered}, then the
unknown function p(a;,c=0,a3t) {i.e. hydrodynamic pressure! in curvilinear co-ordinates
(o, o, a3) on the journal non rotational movable surface, with non-monotone curvature line in

general, satisfies the following time t depended form of modified stochastic Reynolds equation
{[12] section 8.4}:

o | hy(OE(p) 't o | by (9E(p) T
S _mM, |E| [ 4 da, ||+=2-| 2 —M, |E| [ 4 da, ||=
60:1[}11( oa, IJ u " 0’2}] AR ! 7%

CE(er)
ot

+0,(a,B), (23)

P h1h3[E( | AsdazJ — E(gy) |- hyhy
oo, 5

where:
azl er 1 -l aza gfa
0 0 0 0

whereas: 0_<a1_Q7Z'(91, 0_<(91_<], bm_<a3_<bs, 0_<O{2_<8T, STZET(CXJ, 063,1), 77(6!1, o), 613) h](d], 613),
hs(ay, a3), Op-terms caused by the visco-elastic oil properties.

PROOF SKETCH OF THEOREM 1.

The results of the applied mathematical achievements are presented in the form of a derivation
and approximate solution of the stochastic, modified Reynolds equation of the second order (23)
using semi analytical and numerical methods in curvilinear orthogonal coordinates. Such a
modified Reynolds equation was obtained by imposing at first the specific boundary conditions on
differential equations (1)-(7) for the liquid flow in the thin boundary layer and in the next step,
we impose the proper boundary condition on the fluid velocity component in gap height direction.
Taking into account the magnetic field and stochastic changes of the gap height between two
surfaces, and changes of the dynamic lubricant viscosity in the gap height direction, then modified
Reynolds equation in curvilinear orthogonal coordinates formulated by Eq.(23) {[6, 11]} was
obtained. In equation (23) hydrodynamic pressure p is the unknown function. Symbols h;j(o;,a3)
for i=1,3 denote Lame coefficients for non-rotational surfaces and non-monotone curvatures and
hi(ai3) for rotational surfaces and its non-monotone generating lines {[6], section 2.1}, ® — denotes
the angular velocity of the rotational surface, t — time. A full proof was completed in the Authors
monograph {[12] (Chapter 8.4)}.

COROLLARY FROM THEOREM 1

If the surface deformations and M;=0 {i.e. the magnetic field are taken into account} and
stochastic conditions as well n(a;,03) {i.e. viscosity changes in gap height direction a, are
neglected}, then modified Reynolds equation (23) for rotational deformable surfaces in curvilinear
orthogonal coordinates tends to the following form see [6] {intersection 3.1.5}

3 3
1.2 {‘9 (“2)( P —Ml(z)hlﬂ+i d {hlg (”2)( P —M3(t)h3ﬂ:6a)hl 0s3) (25
h oa,| n, oo hy doy | hin, \ doy o,
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M;= 1, (NV)H;+ 0.5 ,rot(NxH); for i=1,3. (26)

Applications: p is an unknown pressure function, € — gap height restricted by the two surfaces, u,—
deformations in the gap height directions. Symbols h;(as), hs(as) denote Lame coefficients
depended on the surface geometry, ® — angular velocity of the surface, t — time.

5. Numerical calculations

FEM, or difference and Mathcad tools are useful during the pressure calculations from (25).
For spherical coordinates o=, o,=r, as=3 we have: hj=Rsin3;, hs=1. Fig. 1 and Fig. 2 shows the
time -variable, distribution of function p on the spherical calculation region Q: 0<p<r,
nR/8<a3=3<nR/2, 3;=9/R for the periodic stochastic flow. We assume p=p, on the boundary of
region Q). Semi numerical pressure calculations by virtue of series (20) and Eq.(25) are performed in
Matlab 7.2 and Mathcad 12 Professional Program by means of the finite difference method. We
assume the radius of the spherical surface R= 0.0265m, the angular velocities in circumferential and
meridian directions ;= 1.40 s™', w3=—0.45 s and the angular perturbations in the above-mentioned
directions o= 0.100s, m3,= 0.025s. The angular velocity describing periodical perturbations
equals ®,=500 s'. Components of eccentricities are as follows Ag=2.5 um, Agy=0.5 pm,
Ae,=2.0 um. We assume following values of fluid viscosity and density: n,= 0.15 Pas, p,= 1000
kg/m’. The minimum value of the gap height equals &yin=4.8 um, the maximum value attains €ma=
10.50 um. Pressure values are calculated in the following instants within the time period: t=0s,
t=m/, s, t=21/®, s. Stochastic dimensionless coefficient caused by the roughness is defined in the
following form: g = 6/ E(e1) see [6]. Magnetic effects are omitted i.e. M;=0.

R = 0.0265 [m], o= 0.15 [Pas], , =500 [1/s], & = 1.4 [1/s],

3= 045 [1/5], ©10= 0.1[1/5], (3= 0.025[1/s], Be=0.00020[Pas’], o=1/3,
Lubrication surface =20.38[cm’]

R =0.0265 [m], 1o = 0.15 [Pas], @, =500 [1/s], @3 = 0.45 [1/s],
o= 1.4 [1/s], 015= 0.1 [1/5], @3, = 0.025 [1/5], Be=0.00020 [Pas?],
=0, Lubrication surface =20.38 [cm’]

1.5 [MPa]
1.5 [MPa]

0.75 [MPa]
0.75 [MPa]

t=0 and t=2w@, [s]
Pmax=1.775-10°[Pa]
Cio=1254.7 [N]

=0 i =2/, [s]
Pmax=1.798-10° [Pa]
C=1289.0 [N]

t=0.37/, [s]
Prmax=2.407-10° [Pa]
Co=1792.8 [N]

t=0.37/, [s]
Pmax=2.443-10°[Pa]
Cio=1839.1 [N]

1.5 [MPa]
1.5 [MPa]

0.75 [MPa]
0.75 [MPa]

' =/®, [s]

Pmac—1.815-10° [Pa] % /o, [s]

Co=1309.2 [N] & 1176:10° (7 Pmax=1.787-10° [Pa] _1’—71*/1"5’"9 _[il06 ,
L Co=1273.4[N] Pona=1. [Pa]
Cio=749.5 [N] Cie=726.4 [N]

Fig. 1. The distributions of unknown function p presenting Fig. 2. The distributions of unknown function p (i.e.

the solution of the partial differential and
recurrence equation on the spherical surfaces
restricting thin gap, and caused by the rotation of
the spherical surface in circumferential direction @
and meridian direction 3, simultaneously
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6. Conclusions

. The analytical models that describe those electromagnetic, non-Newtonian hydrodynamic

effects, which really occur in the areas of slide bearing surfaces, will be prepared with the use
of Maxwell’s equations, liquid motion equations and the energy equation [1-3, 5]. Such models
will allow one to track the real changes of magneto-hydrodynamic effects and particularly the
influence of variable or constant magnetic fields or force impulses on operating processes in
the course of the lubrication of the surfaces of bearings.

2. For the partial differential hydrodynamic system of equations, two main forms of solutions
namely impulsive and periodical are considered and derived

3. For liquids with viscoelastic properties in the thin lubricating layer, the Rivlin-Ericksen’s non-
linear constitutive dependences are accepted taking into account pseudoviscosity coefficients
presented in obtained solutions.
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