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Abstract

The objective of the research under the paper topic is an analytical, unified formulation of a new standardized
view of general solution of hydrodynamic problem using algorithm to determine changes of the components of the
velocity vector, the distributions of hydrodynamic pressure, load carrying capacity, of slide bearings with cooperating
curvilinear, orthogonal surfaces that are lubricated with a various non-Newtonian lubricants. In this paper for non-
Newtonian lubricants are questioning the hitherto prevailing assumptions using in hydrodynamic theory of lubrication
such as constant value of lubricant viscosity and pressure in the thickness of lubricating gap i.e. in gap height
direction.

Finally, the non-homogeneous partial differential equation generated with variable coefficients that is the result
of the various boundary conditions being imposed that are different for each problem solved is an equation that
determines the distributions of hydrodynamic pressure values. This equation is to be written in the form of a unified
non-homogenous partial recurrence equation with variable coefficients. The Authors foresee that a mega-algorithm
will be developed for the solution of this equation in a numerical form. This equation in particular cases is an
equivalent of modified Reynolds equations in the research that has been conducted so far concerning the
hydrodynamic theory of lubrication.
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1. Introduction

The authors accepts a hypothetical assumption that investigations of the hydrodynamic lubrication
of slide bearings starting from the foundations of the problem shall result in questioning in some areas
of solutions the basic simplifications that have been in use so far, e.g. the constant value of the
viscosity of the lubricating liquid and of the hydrodynamic pressure on the thickness of the lubricating
gap, lack of interaction of material coefficients of the superficial layer of lubricated surfaces on the
viscosity of the lubricating agent. The theory of hydrodynamic lubrication that has been valid so far is
based on the abovementioned simplification assumptions and it leads to Reynolds equations that are
more or less modified and that determine the distributions of the values of the hydrodynamic pressure
[5]. The research practice that has been accepted so far by many authors for the formulation of various
problems in the area of hydrodynamics comes down to modifications of the Reynolds equation that
was derived 100 years ago without any thorough derivations; one forgets that it is the Reynolds
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equation that is the result of an imposing concrete boundary conditions that are different in almost each
problem on the components of the distribution of the velocities of the lubricating liquid in the bearing
gap. Furthermore, no attention is paid to the curvature of lubricated surfaces and, practically speaking,
the same equation is accepted in cylindrical, rectangular or spherical coordinates. The authors assume
that the abovementioned simplifications may lead to numerous incompatibilities of the results of
numerical and empirical research [4].

2. The system of partial differential equations

We show following system of non-linear basic partial differential equations describing the
lubrication of two curvilinear non-rotational surfaces [1-3]:
Equation of continuity:

0 0 0 0
—(phyhy )+ —(pv 1y )+ ——(pvo I 1y )+ ——(pvs iy ) =0, (1.1)

ot o, oa, oa,

Equation of motion:
1 op 0 ov;

X,v)=———+— Vi, Vs, A, =1, 1.2
i(V,v3) h da,  oa, |:77p( 1-V3 ﬂ)éaz} (1.2)

o (v Y (v Y| 4
(a+2p) LT R L T (1.3)

oa, |\ 0cr, oa, oa,

where for i=1,3., we have:

(1.4)

X () = p %4_\/_1 ov; v, ov; L ov; LY oh; vy, Ohy '
ot h oo, oa, hyOay; hhyoa,; hhy Oa;

Dimensional apparent viscosity 1ny,=n,(vi,v3,0,3) is obtained from Rivlin-Ericksen dependencies.
We denote: t — time, p — fluid density, ;) — Kronecker symbol. The unknown functions are: velocity
components vi, v, v3, pressure p. Velocity components v;, pressure p, apparent viscosity function np,
are presented in following series expansions in relation to small parameter [6, 7, 8]:

vi(ay,ay,05)=vig(ay,ay,05)+ Dvy(ay,ay,05)+ ..+ D'vyay,aq,05)+.. . (2.1)
play,ay.a3)=pyolay,as)+ Dpy (e, ay,a5)+ ..+ D' pylay,ay,a5)+ ..., (2.2)
np(vl,v3,a,ﬂ):770[l+anl(al,az,a3)+...+Dj77pj(a1,a2,a3)+...] , (2.3)
7, (vl,v3)=%{af’7” g];’jv”D)}Do for j=123,... . 2.4.1)
p=p, =22 or p=p,=2. (2:42)

7o 7o

where i=1,2,3; j=0,1,2,..., ® — linear velocity of cooperating surface, D — Deborah number. We
denote: Mo — characteristic dimensional value of classical dynamic viscosity, n,; dimensionless
expansion coefficients whereas for j=0 we have np=1 and np=n;(vi,v3) for j=1,2,.... Moreover a,
B — first and second pseudoviscosity coefficient in Pas”, ng — characteristic constant dynamic
viscosity value in Pas, A; — velocity deformation tensor in s~ [1].
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Now we put series (2.1-2.3) into the system of partial differential equations (1.1)-(1.3).
Multiplying the series by Cauchy method, equating the coefficients of the like powers of small
parameter D, we obtain a sequence of following systems of non-linear (for X;#0), or linear (for
X;=0) partial equations [9]:

1 &g 0 ovjj 0 .

X.. 05 Vilsees Vii +— = —+ S =1,3, 3
ij (Vi0s Vil Vij) W do;  das [770 oey ) 7 (770 y) i (3)
Py _ o )

oa, oa,

0 0 0 0
J 0 E(Ph1h3)+a_al(/7"1jh3)+£(W2jh1h3)+£(,0"3jh1)=0, )
for i=1,3; j=0,1,2,..., =(1+2p/a)no/® where:
_ _ v _ 9vig il _
Sio =0, S =2 P Si2 _%(nlﬁ)"}'%”/plw"’ Sij —Sij(vlj—la"3j—1)a

Fy=0, F=Gog, F»=2G;1, F3=2G12+G13,... Fj:Fj(Vlj—19V3j—1)’
11 =1p1(10-v30 )k 1p2 = 1p2(V11:V31 s 11 = ”pj(vlj—lav3j—l)a (6)

2 2
G = oo N ov3 Gy = vy Ov11 N ov3o 0v31 ’
Oap Oap Oay Ooy  Oop 0Ooy

2 2
Gy = ovip Ov)2 N ov3o Ov3o Gia = ov11 N ov3q o
dar Oar Oan Oay Oon Oap

System of Egs.(3)-(5) for X;=0, determines following unknown functions: vij, vaj, v3j, pgj, for
1=1,3; j=0,1,2,... where X ; — inertia force, and convection transport obtained after Pickard

approximation procedures:
k k—0 *
X225 x (7)

Symbols hj(az) for i=1,3 denote Lame coefficients for rotational surfaces and its non-
monotone generating lines. For non-rotational surfaces, we have: h;(a,013) for i=1,3.

3. Boundary conditions

Since the two cooperating surfaces are moving, and there can be slip, hence the boundary
conditions (for i=1,2,3; j=0,1,2,...) have the following form [6]:

vij(ag,0p =0,03,t) = 8;0Uj (0, a3,1), (8a)
Vij (oq,000 =h,03,t) = SjOUip (ay,03,1), (8b)

where ;o denotes Delta Kronecker Symbol, h denotes gap height. Functions U;=0, Uj;>0 can be
continuous, constant or variable but not arbitrary in general.
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4. Solutions of system differential equations

Integrating twice equations (3) solutions with respect to variable oy under conditions (8a),

(8b), then if functions X and Z are uniform convergent to X, Z after Pickard procedure (6), hence
we obtain [2, 6]:

a,
vy = hl ZI:;]A I[Uo jX da, - S, }daz AILO [x; da, - SU]da2+
v, (4, -u,)+u ], for i=13j=012., ©)
where:
a, h -1 a, h
Ao, ay,04) = Iida{jid%] , A, 0, 03) = Iﬂdaz—As(al,az,%)jﬂdaz. (10)
0 o o o o o o o

We integrate continuity equation (5) with the respect to variable o, i.e. in gap height direction.
Imposing the condition (8a) for i=2 i.e. v,=U,08jp for a,=0, upon velocity component v,; in gap
height direction o, we get the following solution [5]:

8
VZjZ%U25jO oh h3{j5joa Phyhy d“z"‘j (PVU h3)da2+j (pv3]h1)da2 ,(11)
where j=0,1,2,... and p,, Ep(ocl,ocz :O,oc3,t).

Imposing the condition (8b) for i=2 i.e. v2=U,,0i0 for a,=h, upon velocity component (11) in
gap height direction o, we get the following expression:

8

hyh (PoUz PhUzp jo —I5jo o (ol iy Jdax, +I PVUh )da2 +J- PV3jh1)d0‘2 (12)

where j=0,1,2,... and p}, Ep(al,az :h,oc3,t).

Differentiating the definite integrals with variable limits of integration, we obtain the following
formulae [2, 4, 5]:

h_a rg o e oh p,g
v lda, = 2oy lda, -—22y (a0, =h,a3), 13
-([aa,(h,. UJ ? aal,o[h_ ’-/] 2 da, h, lj(l 2 3) (13)

for i=1,3; j=0,1,2,... .
Because h,=1, hence:

g =hhyhy = hhy. (14)

We put identity (13) in expression (12) and we take into account boundary conditions (8a),
(8b)i.e.:
\/10(051,052 = h,a3):U2, vlj(ocl,at2 = h,a3):0 for j=123,...,
(15)
vyl o, :h,a3):U2p, \/3‘/.(051,052 =hay)=0 for j=123,..

Hence for j=0,1,2,... we obtain [6]:
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oh oh
hh Ur —p U oin+| —mUy, +——mU 0in =
13(P0 2~ Ph Zp) ;0 (aal 3Y1p 203 1 3pjph Jjo

h

I I

5 5 0 oh

-9 In)d +—.[ ) + Ik —I doty — 5. (16

aal_[(ﬂvu 3) %) 20 (PV3] 1) g + by = | pdaz = pj 70 (16)
0 0

o

From formula (16) unknown pressure functions p; can be calculated as functions of velocity
components vyj, v3; for j=0,1,2,... . Fluid velocity vector components vy, v3; presented by formula
(9) we put in Eq.(16). Thus, we obtain [6]:

* P,
L0 [hiAq (al,a3)apj

1 0 |~ « apj
_— + —A (a,,0,)—= | = As. (at;, 04, 1), 17
hhy O, | h al} { 2 (@ 3)80( 5 (@),23,1) (17)

hyhy Oy | hy 3

for j=0,1,2,...; hi=h;(a1,a3), h3=hs(a;,03), pgj(a1,02=0, a3), and

1 o g h azlaz . i 1a2 . h
Ay == oa — | Xydepda, —A; — | X |day +6,,U; | pda, +

1

. . % oh 0
+8,, AU, ~U, )+ 4 [ S,da, [ | p[S,der | |des +[ph———jpda2}r
0 0 0

0 ot Ot
Uy, oh Us, on
+| poU, + - +—L ~U,, ||9)0-
{Po 2 ph( h oa, h oa, 2p 1950 (18)
Ag = [pAgday, Ay =[pAyday, (19)
0 0

for j=0,1,2,... .
Mega Reynolds Equation (17) determines unknown pressure functions pj(a,0=0,013) for j=0,1,2,...

5. Particular case

The following assumptions are made now:

1. Fluid viscosity n is independent of o, i.e. is constant in gap height direction. Then Egs. (10),
(19) give [6]:
3

o « ph o, . ph
A (e, E—z, A (ay,00)=—, A, (a),a;)=—\a, —h), A (a,03)=—— (20
slaa) ==t Aa,a) =05 Ay (@, a) =2 ey =h) Ay (e,a) == (20)

Lubricant density p is constant.
We are neglecting the inertia forces of the lubricant i.e. Xjj =0.
We take into account Newtonian fluid i.e. Sj; = 0.

Only one curvilinear surface is moving in a; direction, hence U;#0, U,=U3=0, U;,=U»,=U3,=0.
We have a stationary time independent flow.

AN
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Mega Reynolds Equation (17) for j=0 has the following form [6]:
for h;=h;(a;,a3), hs=h3(a;,03).
6. Pressure changes in gap height direction

Now we are going to proof that the hydrodynamic pressure varies in gap height direction. From
(3)-(5) for j=0 and conditions (8) we obtain velocity component and pressure in following form:

V1o (al,az,a3 ), V20 (alsazs% )» V3o (0{1,0{2,0{3 ), Pao (al,a3). (22.0)

Into Egs. (3)-(5) for j=1 we put (22.0) and =0 in (4). Hence, under conditions (8) we obtain
corrections of velocity component and pressure in following form:

Vu(alaaza% ), Vzl(al7a2’a3 ), v31(a1,a2,a3 )’ Pdl(ala%)- (22.1)

Into Egs. (3)-(5) for j=J we put solutions (22.1), (22.2), ....(22.J-1) and =0 in Eq.(4). Hence,
under conditions (8) we obtain corrections of velocity component and pressure in following form:

Vi (al,az,a3 ), Vo (alaaza% ), L&V (alaaza% ), Pas (0‘17“3)- (22.J)

The above mentioned pressure functions we recognize as pressure and its corrections on the
journal surface i.e. for a,=0. Hence, we can write:

Pao (0‘1’0‘3 ): Pdo(alaaz =0,0; )a s Pay (al ,a3)= Pas (051,052 =0, 0‘3)- (23)

We multiply by D' and sum up mutually Eq.(4) for j=0,1,...,J. Thus after integration both sides
of modified Eq.(4) with respect to variable o, we obtain:

J J
ZD]de(“lsazaas): é/szFj [Vlj—1(a1»0‘2:053)»Vsj—1(0‘1»0‘2=053 )]+C- (24)
j=0 j=!

On the journal surface for a,=0 the pressure is described by the formula:

J .
ZD'Ide (a), 0, =0,05). (25)

Jj=0

Hence the integration constant has the form:

J J
C=ZD1pdj(a1,a2 =0,a3)—§ZI‘DJCDj(a1,a2 =0,053),
=

= (26)
(Dj(ap“z»%)zFj[vlj—l(“1:azsas)av3j—1(alaazaa3)]~
Pressure function has finally the form:
J J
pw(al,az,%):ZDfpdj(al,a3)+(ZD’ [q)j(alaaza%)_q)j(alaaz =O,a3)]. (27)

j=0 j=l
In particular case for J=1 we have:

1
Pais (al,az,%): ZDjpdj(al’O%)'*‘éD[q)l(al’az’a3)_q)1(a1aa2 = 0,0!3)]:
Jj=0

:ZILDjpw(al,a3)+D§[(av—]°) +(%j } : (28.1)
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Velocity components vy, V3o determined from (9) for j=0 we put in (28.1). Hence we obtain:

L 10 —-ha 2U
pdlZ(al’a29a3): szpdj(al’a3)+D§&z_ Py {0!2 Pay _ é‘io:|‘ (28.2)
=0

n S3h Oa, nh, Ooa«, h

On the sleeve surface for o,=h the hydrodynamic pressure (28.2) has finally the form:

N 2DU 1 op
pais(@,a; =h’a3)=szpdj(al’a3)_— 1+2£ —. (29)
0 10} a)h O«

For cylindrical bearing o.;=@, o,=r, ai3=z, U=0R, h;=r. The pressure (29) on the sleeve has the
form:

0
pas(0r=12) = punlp.2)+ Dpl.2)-20{ 122 | L. 30

It is easy to see that if D=0, then pressure on the sleeve is identical as the pressure on the
journal surface.

7. Adaptation of recurrences

In curvilinear coordinates (ot;,0,,0t;) a modified Reynolds equations determines unknown

function p(a,,0l4) {i.e. hydrodynamic pressure} in thin space between two surfaces with
curvilinear sections. According to equations (17) an unknown function p for D=0 satisfies the
following unified form of second order partial differential equation [10]:

0

Cla,,a
(a, 3)80[1

op
oo

3

0 0
P }F(a],ag)—[B(a],ag)
oa, oa,

{A(alaa3) }:Az- (31D
THEOREM

A partial homogeneous, second order differential Reynolds equation with variable continuous,
single valued coefficients A, B, C, F, Ay derived in thin space between two movable surfaces in
curvilinear, orthogonal coordinates (o, o, a3) and presented in the following form:

2 2

c AP cyOP B P gLy (32)

is simulated by the following linear, non-homogeneous partial second order recurrence equation
with unknown function p, variable coefficients S and a variable free term Q:

SK'(Z’J) pi+l,j +Sv(i’j)pi,j+1 +S7r(l’]) pi,j—l +S§(la]) pi—l,j _Z(iej)pi,j :Q(iaj)' (33)

7. Conclusions

An adaptation of the known recurrence and difference methods in the case of imposing of
various boundary conditions that are formulated in curvilinear orthogonal coordinate systems
during the solution of complex problems of Reynolds equations presents in the author’s opinion
anew scientific contribution, which is presented in this paper in the scope of linear recurrence
equations with variable factors and a variable free term [5].

The mega-algorithms developed of the solutions and the properties of the mega-algorithm for
the determination of the solutions of a generalized Reynolds partial recurrence equation with
variable factors was used in numerical calculations with the use of professional software such as
Matlab and Mathcad.
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