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Abstract 

The problem of propagation of vibration waves in soil caused by passing trains and vehicles is an important issue 

for the assessment of their influence on environmental impacts and engineering structures such as bridges, viaducts, 

historic architecture and residential buildings. The issue is complex because the nature of the soil is heterogeneous 

and the groundwater level changing depending on the season and this creates great difficulties in developing a 

theoretical model of vibration wave propagation. The paper presents developed numerical model of soil consisting of 

4.3 million cubic finite elements based on the geological properties of soil. Developed model based on Drucker-

Prager material model, which is often used in numerical methods for simulating the behaviour of different soil types. 

In addition, the material properties of the soil was specially prepared and allowed to use them directly in the material 

model used. Both concrete (building) and steel (plate forcing) were modelled using an isotropic material model. 

Element size was set at 300 mm. This value was determined by the adopted frequency range studied (0 to 100 Hz) and 

due to verification by simulation results of experimental studies in which excitation has been implemented in the 

frequency of 33 Hz (base frequency of excitation signal) and 66 Hz (second harmonic of excitation signal). The cut-off 

frequency 100 Hz defines a minimum wavelength propagated in the soil (based on the stiffness and density of the soil) 

and 10 finite elements was adopted at a wavelength, which is 3 meters to the ground, for the correct mapping of 

a sinusoidal waveform. Subsequently, experimental studies were performed to verify the model from which the 

conclusions are presented in the work. The work was carried out in a research project 4875/B/TO2/2010/38 financed 

by Ministry of Science and Higher Education. 
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1. Introduction 

 

The problem of vibrations wave propagation in the ground caused by railway vehicles and 

vehicles movement from the theoretical point of view is extremely complicated [6, 8]. This is 

mainly due to inhomogeneities in the land, its history and underground water dependent on 

atmospheric conditions. The consideration of problem of waves propagation based on the theory of 

surface waves propagation. This follows from the assumption that these waves destroy buildings 

and structures in earthquakes but can also cause devastating effects in the case of rail and road 

transport in the long-term duration of residential buildings in the vicinity of these roads as well as 

have a negative impact on human comfort placed in them. Propagation of vibration theory is 

described by the Rayleigh surface waves or by Love's waves when the elastic layer rests on the 

stiffer centre. Theoretically, surface waves are a number of special periodic solutions of 

the integral equation satisfying certain boundary conditions, i.e. the free edge of the elastic half-

space. Hence, these solutions are characterized by wave velocity along the surface of the half-

space and, what is their most important feature, fast fading amplitude with distance and depth from 

the surface. This disappearance is not due to attenuation but it is the specific effects of mutual 
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longitudinal and shear waves. Such an approach to assess the propagation of vibrations in the 

ground and their impact on engineering structures is not very efficient, and therefore developed 

more practical theoretical methods of prediction of the vibrations wave propagations in the ground. 

These include Golitsyn method, the method of spreading the vibrations in the ground 

PN-80/B-03040 adopted and the method of numerical simulation in which the assumed earth 

model based on geological research [2, 3, 7, 9, 10]. This study includes experimental verification 

of simplified prediction method propagation of vibrations in the ground from the rail and road 

transport based on vibration examination conducted in a large urban centre. 

 

2. Characteristic of waves propagation to the surroundings of the road 

 

Variable dynamic loads caused by the movement of the vehicle generate waves that spread to 

the roadway surface and its neighbourhood (Fig. 1) [1]. 

 

 

Fig.1. Diagram of the wave vibration propagation in the environment 
 

Until now, the experimental studies are the most appropriate form of waves propagation in the 

ground examinations. Based on research can be assumed that the land has a natural frequency of 

vibration and for impulsive loads can spread vibrations of this frequency. The frequencies 

corresponding to the maximum amplitude depend on the characteristics of the land and the mass 

and mechanical properties of the calling vibration, the load distribution and the interaction system: 

the vehicle - road - substrate. Construction of roads and the stratification of soil heterogeneity that 

occur in the vicinity of the road and cause the waves generated by the wheel contact with the road 

are complex. At the junction of roads and soil layers followed by reflection, refraction and 

interference, so that in the vicinity of the road is not possible to distinguish the type of waves. The 

components of the individual waves propagate at different speeds, their components show 

a complex course of the phenomenon, and therefore assumed to call them surface waves in contrast 

to the Rayleigh waves and their distribution pattern is exactly as described in the literature. Surface 

waves are characterized by the fact that they have a lower velocity of seismic waves of longitudinal 

and transverse, have a greater amplitude but is much faster suppressed. One can identify different 

types of waves during the measurements of ground vibrations after the i.e. explosion or earthquake. 
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Small oscillations of the longitudinal waves are first, then one can identify small oscillations of the 

transverse waves and at the end the surface waves with large amplitudes. 

Velocity of propagation of a particular type of waves is determined by the equations: 

 longitudinal waves: 
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 transverse waves: 
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 surface waves: 
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where: 

E – Young’s modulus, 

 – Poisson’s ratio, 

 – density. 

Another important issue is to assess the actual course of ground vibration. The research shows 

that the curve is characterized by changes in the size of amplitude with distance is regular in the 

case of a homogeneous medium, and disrupted the layered substrate. When activated by 

groundstrokes – vertical vibrations of surface momentum going into a group of waves whose 

amplitude vanishes in both time and distance-call stroke. Based on work [1] should be expected 

with the highest level of vibration in the case of transit vehicle with a trailer, it should add up 

vibrations from the car and trailer. If you are close to each other goes a few vehicles, their impact 

on the level of the excited vibrations may overlap, which in turn can lead to several times increase 

of the level of vibrations induced .by a single vehicle. 

This hypothesis is difficult to prove and not supported by the operating results of the 

measurements, as you can imagine, based on the geometry of the submission of vibration, that 

vibration from several vehicles are mutually suppressing. Our study confirmed that vibrations 

caused by passing several vehicles at the same time, it does not cause a rapid increase in the level 

of vibration, and in some cases were smaller than the one run. In general, based on the research 

can be stated that a major impact on reducing the level of vibrations that spread to the surrounding 

roads to stabilize the road surface on which effect is influenced by structural friction (energy 

dissipation) between the elements stabilizing the soil. It is concluded that for stabilization of the 

substrate, the contact force (tire-surface) move not only on the rigid system, but also on a larger 

surface of the ground, reaching to the deeper, stronger and less compressible substrates. The 

highest level of vibration can be expected after crossing the road with the ground clay and gravel 

of the smallest on the way. Change of vehicle speed from 30 to 50 km / h slightly affects the level 

of ground vibration. As we can see, the mechanism of transmission of vibration is very 

complicated for several reasons. The most important reasons are: 

 significant changes in material properties due to changes in roadway atmospheric,  

 road viscoelastic properties (complex module depends on the local stress load and speed). 

All these factors make the current lack of accurate methods for the description of the vibration 

transmission path in the environment. 

 
3. Prognostic assessment of vibration propagation based on simplified methods 

 

The forecast of the spread of the vibration from the road, tram-car on a residential building 

which is at the stage of the project was initially based on Polish Norm PN-80/B-03040, then 
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verified by the Golitsyn method and finally verified by numerical simulation of the vibration 

propagation for the same conditions . 

 

3.1. Prognostic assessment of vibration propagation based on Polish Norm PN-80/B-03040 

 

According to the model adopted in the standard vertical vibration amplitude (horizontal) 

ground Ar ground at a distance r (Fig. 2) from the centre of gravity of the foundation (in our case 

the subgrade tram) caused by the vertical (horizontal) forced vibrations of the foundation may be 

an indication, regardless of the type of ground surface, designated by relationship: 

 0AAr , (4) 

where: 

A0 – amplitude of vibrations caused by passing trams, 

Ar  amplitude vibrations of the ground at a distance r from the axis of track, 
2

11
4.0

1 ,  

0r

r ,  

F
r0

, 

F – surface of a single primer. 

 

railway tie 

r

Fig. 2. The computational model used in the analysis of wave propagation in the ground 
 

Assuming that the distance from the foundation of an newly designed apartment building from 

the axis of single track r is equal to 20 m, the surface of a single railway tie F is equal to 0.51 m
2
, 

we calculate the r0 = 0.4 m,  = 50. Substituting these values into equation 2, we determine the 

coefficient , which is 0.133. Assuming further that the amplitude of the excitation A0 of a single 

tram journey, measured on the backing of about 1 m/s
2
 (these data should be verified by measuring 

–search has shown 0.77 m/s
2
 for the tram NGT6 – may be higher depending on the condition of 

tracks, type of tram, the vibration isolating security, etc.), then the value of the amplitude of 

vertical and horizontal set theory (in the building they play a major role, although the vertical 

vibration can cause adverse subversive moment) transferred to the projected residential building 

are Ar = 0.133 m/s
2
. 

According to section 4.3 of Polish Norm PN-85/B-02170, effects of vibration transmitted by 

the base of the building can be omitted in those cases where the share of the burden of the structure 

is negligible and indicative can be assumed that the amplitude of horizontal ground motion 

acceleration at the foundation of the building satisfies the condition ap < 0.005 g. 
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3.2. Prognostic assessment of vibration propagation based on Golitsyn method 

 
The verification of this forecasting method was based on the relationship given by Golitsyn, 

with errors, but estimates for this type of vibration sufficiently convenient and simple to use, point 

[2]. Moreover, bearing in mind the possibility of interference during the construction of a newly 

designed building through the use of properly selected isolation level security such as vertical or 

road or rail car, you can effectively protect the surrounding environment from the effects of road 

transport, tram-car. This relationship is as follows: 

 
)(0

0r
r

0e
rrr

AA , (5) 

where: 

A0 – amplitude of vibrations caused by passing trams (Fig. 2), 

Ar  amplitude vibrations of the ground at a distance r from the axis of track (Fig. 2), 

 – dissipation ratio of vibrational energy. 

The allowable amplitude of acceleration, which allows for the omission of the forces of inertia 

in the building, determined on the basis PN-85/B-02170 – “Evaluation of harmful vibrations 

transmitted by the base of buildings”. Its value to determine the vibration zone was adopted for 

both horizontal directions (x, y) and for the vertical direction (z) equal to Ar = 0.005 g Assuming 

then the value of absorption coefficient  = 0.03 (weak, saturated with water, small and medium-

sized and silty sands, sandy clay and clay can determine the distance r acting in the zone of 

maximum amplitudes of vibration. for example, assuming the forecast of the spread of the vibration 

amplitude of the maximum value of acceleration equal to A0 = 1.00 m/s
2
, which were measured 

(these data should be verified by measurement – survey showed 0.77 m/s
2
 for the tram NGT6 – 

may be higher depending on the condition of tracks, a streetcar, vibration isolating security, etc.) 

on the tram route Kraków can be determined theoretically the spread of vibration for the same 

class of roads. this is done by transforming the equation (3) the following form: 
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The solution of equation (6) can be determined by the graphical method. For example, assuming 

the following values: r0 = 5 m, Ar = 0.04 m/s
2
, A0 = 1.25 m/s

2
 and solving them as a function of the 

absorption coefficient  for which, the following values:  = 0.01 ( weak, saturated with water, small 

and medium-sized and silty sands, sandy clay and clay),  = 0.04 (medium and coarse sand and wet 

clay and clay),  = 0.1 (sandy clay, clay and silt little wet and dry). Roots of the equation (6) provide 

for such a distance in the input parameters, which should draw the line vibration zone. In Fig. 3, 4 

and 5, shows how it affects the zone of vibration energy absorption coefficient . Roots of equation 

(6) are r( ) = {172 m, 61 m, 31 m}, which means that at this distance should draw the line vibration 

zone. Based on this analysis it is clear that the effect of the absorption coefficient on the width of the 

zone is very large. Based on it and information about the surface geology of the land area can be 

determined vibration over the whole route of the proposed road car. Of course, in practice, the 

distance is much smaller area for many reasons such as soil heterogeneity, and the road runs on an 

embankment or in the trench, the presence of drainage ditches along the road, etc. 

Since the proposed road route can take place near existing residential buildings that are located at 

a shorter distance than the limit designated zones, you can reverse the problem, i.e., assume that all 

the buildings in the distance r less than 25 m, generally should be protected, then we assume that the 

border zone of vibration is 25 m, then transforming the relationship (5) we can determine the 

allowable amplitude of excitation on the gauge of the road. Equation (5) takes the following form:  

 )( 0e
rrr

AA
0

0 r
r

. (7) 
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Fig. 3. Radius of vibrational zone for the =0.01 
 

 

Fig. 4. Radius of vibrational zone for the =0.04 
 

 

Fig. 5. Radius of vibrational zone for the =0.10 
 

Substituting the above equation the following data: r = 25 m, r0 = 5 m, Ar = 0.04 m/s
2
, we will limit 

the amplitude as a function of the roadway gauge the soil type (factor absorption – ), which are: 

 for  = 0.01 – A0 = 0.10 m/s
2
, 

 for  = 0.04 – A0 = 0.13 m/s
2
, 

 for  = 0.10 – A0 = 0.24 m/s
2
. 

The overall conclusion is that there are two possibilities to develop forecasts of vibration zones 

designed to protect against the influence of vibration on the environment. The first is the 

appointment of vibration zones, with the knowledge of the geological data of the land, but the area 
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is very wide, in the sense of the border zone, which is associated with an increased number of 

buildings that should be protected. The second possibility is the imposition of such zones within 25 

m and defining the permissible amplitudes of accelerations or displacements on the road gauge in the 

case of isolation, the values of the amplitudes of acceleration or displacement, ground vibration that 

is mounted Vibration isolation. In this case, reduces significantly the number of buildings that should 

be protected, and limit the amplitude can be obtained with vibration isolation performance of the 

road or the road having a solid foundation even exchange of land. 
 

3.3. Prognostic assessment of vibration propagation based on numerical simulation 
 

Computational model consists of a cuboid with dimensions of 30x19x4 m (Fig. 6) which was 

built with the following elements [4]: 

 UIC60 tracks were modelled with beam elements with rectangular cross-section, 

 railway ties PS-83 were modelled with eight-node solid elements in a 670 mm scale, 

 stony ballast of 300 mm thickness below the railways ties was modelled with four-node solid 

elements. Between the ballast and the tracks there was no contact, 

 subgrade of 300 mm thickness was modelled with four-nodes solid elements, 

 soil was modelled with four-nodes solid elements, 

 sidewalk of 50 mm thickness was modelled with four-nodes solid elements, 

 fragment of the building was modelled with four-node solid elements. 
 

 

Fig. 6. Diagram of computational model 
 

A numerical simulation of the foundation vibration of newly designed building was carried. 

The results of this analysis for points located at the foundation of 1 m above the ground and 2 m 

below the ground surface in the direction of X and Y axes are shown in Fig. 7 and 8. 
 

 

Fig. 7. Amplitude of the vibration acceleration of the foundation of the building in the X direction 
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Fig. 8 Amplitude of the vibration acceleration of the foundation of the building in the Y direction 

 

The results (Fig. 7 and 8) can be concluded that the amplitude of vibration acceleration in X and Y 

axes exceed the limit values. The simulation results showed that the amplitudes of vibration acceleration 

of foundations of newly designed buildings that exceed the value of 0.005g and the propagation of 

vibration wave should be take into account during the design process of building [5, 11]. 
 

4. Experimental verification of waves propagation in the ground 
 

Based on recorded during the test verification of vibration time signals on a single measurement 

of cross-sections through a large urban area for the analysis of selected passages involving the 

transportation trams and automobile communication. The graphs presented in Fig. 9, 10 and 11 show 

the vibration spectra determined from the amplitude of time histories of ground vibrations. 
 

 
Fig. 9. The spectrum of the acceleration of the building in the X direction 

 

 

Fig. 10. The spectrum of the acceleration of the building in the Y direction 
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Fig. 11. The spectrum of the acceleration of the building in the Z direction 
 

5. Conclusion 

 

Based on considerations it can be stated that none of the methods of forecasting spreads the 

vibration in the ground is not fully reliable. Although each of them indicated a significant effect on 

risk of newly designed building shake, but significantly differed from the values obtained by 

experiment. Hence, it is concluded that the essential building a database of extortion, creating 

numerical models of various types of vibration waves emanating from rail and road transport 

should be carried out with many experiments. 
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