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Abstract 

In this paper, we present Fourier series less approaches for determining the energy produced by discontinuous 

time periodic forces in the wheel-rail contacts of the railway track systems. The vehicle system model used in this 

study consists of a quarter car supported on a bogie, while the side frame is supported on two wheel sets. The main 

advantage of the presented method is the total elimination of frequency analysis, which in effect introduces important 

simplifications in the identification of the energetic effects in the contact. Fundamental properties of contact 

displacements of the rail surface have been considered on the basis of the newly established method. The contact zone 

between railway wheels and the rail surfaces made of bulk materials is perceived as strong enough to resist the 

normal (vertical) forces introduced by heavy loads and the dynamic response induced by track and wheel 

irregularities. The analysis is carried out for a wheel running on an elastic rail rested on sleepers arranged on 

completely rigid foundation. The established model of the wheel-rail contact dynamics has been applied to that same 

roll plane, but with taking into account a nonlinear characteristic of the sleeper with respect to the ground. Attention 

then is focused completely on the modelling of the energy absorbed by the rail. The applied method employs the 

energy state variables as time functions leading to determine the susceptibility of a given contact on the strength 

induced by the rail roll. 

Keywords: railway transport, wheel-rail contact, discontinuous time periodic forces, energy absorbed by the rail, 

strength susceptibility 

 

1. Introduction 
 

Contact forces between a wheel and a rail vary dynamically during the passage of a wheel on the 

surface of the rail. A discontinuous variation of contact forces causes undesired deteriorations of 

a track and its substructures. Therefore, these dynamic contact forces are of main concern of the 

railway engineering. Increasing operational speeds and comfort demands require paying attention on 

both riding qualities of railway vehicles, transport safety and elimination of negative effects on the 

environment. As the challenges of higher speed and higher loads with very high levels of safety 

require ever more innovative engineering solutions, better understanding of the technical issues and 

use of new computer based tools appear as very important and needed activities [2, 3, 5]. 

Accurate and relevant analysis of track system dynamics is necessary in order to determine the 

response of new system designs, as well as to predict the effects of proposed modifications on 
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responses of existing systems or to determine the modifications essential to enable a system to 

give the required response. It should be emphasized that in periodic non-sinusoidal states even 

relatively small track systems may exhibit fairly complex dynamical behaviour. The traditional 

tools for analysis of periodic non-sinusoidal waveforms are the Fourier series and/or fast Fourier 

transforms (FFT) as well as the sampling theorem of Shannon, Whittaker and Kotel’nikov [4]. It is 

worth to mention that a discontinuous signal, like the square wave, cannot be expressed as a sum, 

even an infinite one, of continuous signals. The extraneous peaks in the square wave's Fourier 

series never disappear; they occur whenever the signal is discontinuous, and will always be present 

whenever the signal has jump discontinuities. The main theorem concerning the convergence of 

the Fourier series at a discontinuity implies that this series converges to f(t) except at the point 

t = t0, which is a point of discontinuity of f(t) [10]. Indeed, Gibbs [13] showed that if f(t) is 

piecewise smooth on [0, T] and t0 is a point of discontinuity, then the Fourier partial sums would 

exhibit the same behaviour, with the bump's height almost equal to 

 . (1) )]()([180)( 000 tftf.tf

Recall that the notations f(t0 ) and f(t ) represent the right-limit and left-limit, respectively, of 

f(t) at the point . 

0

0t

Thus, it is evident that more formal time-domain mathematical tools are needed for accurate 

analysis of large systems and complicated harmonic producing elements. The time domain 

representation of a track system by means of the concatenation procedure, as opposed to the 

frequency domain representation by means of the system transfer function, became the more 

advantageous approach to the exhibition of system dynamics in periodic non-harmonic states. 

Especially, the introduction of geometric tools like hysteretic loops on energy phase plane greatly 

advances the theory and enables the proper generalization of many fundamental concepts known 

for computer aided geometric designs to the world of periodic non-harmonic waveforms. 

The purpose of this paper is to demonstrate guidelines for the preparation and analysis of 

periodic non-harmonic problems through case studies and simulation examples. The presented 

method is very straightforward .and appears as a powerful broadly applicable technique that 

enables us to characterize non-harmonic periodic oscillations from a perspective different than that 

obtained by the method resulting from the Fourier series applications. Resulting illustration 

procedures are emphasized using Matlab mfiles [8]. 

The paper is organized as follows. Next section is devoted to preliminary formulations and is 

focused on inconveniences following from applications of Fourier series to analysis of complex 

dynamical system operating in periodic non-sinusoidal conditions. Concatenation procedure is 

established in section three. Problems concerning the wheel-rail contact dynamics are presented in 

section four. Section five is devoted to hysteretic loops of one-period energy and rail’s material 

behaviour is characterized in section six. Summary and conclusions are included into section 

seven. 

 

2. Representation of discontinuous time periodic waveforms  
 

To avoid the difficulty appearing in practical applications of the Fourier series approach to 

obtain exact solutions of problems involved by periodic non-sinusoidal excitations in track 

systems we propose to use a so-called carrying periodic waveform defined as follows 

 )tan(cot
2

)()( t
T

a
TT

Ttptp , (2) 

where T denotes the period. The direct plot of (2) for T =  [s] is presented in Fig. 1a.  

In the sequel we will also take advantages shifted Heaviside step function: 
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Fig. 1. Waveforms: a) p(t, ), b) H(t, ) 

 

The plot of (3) for =  [s] is presented in Fig.1b. The counterpart of (3) for p(t), e.g. H(p(t), ) 

for T=5.5s and  =  [s] is plotted in Fig.2a. Using the carrying periodic waveform p(t) and periodic 

shifted Heaviside step function H(p(t), ) we can easily determine the waveform g(t) = g(t+2 ) 

with g(t) = -sin(2t) for 0  t   and g(t) = sin(2t) for   t  2  e.g. we will to obtain the 

waveform g(t) = sin(2p(t))r(p(t), ) for 0  t  2 , where r(t)=2H(p(t, ))-1. It is shown in Fig.2b. 
 

 

Fig.2. Periodic waveforms: a) shifted Heaviside step function, b) waveform composed of sinusoidal terms 

 

The above waveforms and functions as well as many other similar ones derived on their base 

are very useful in relatively simple representations of composite periodic non-harmonic both 

continuous as well as discontinuous waveforms. 

 

3. Straightforward method for periodic non-harmonic states in linear systems 
 

The demand made on many present day track systems is so severe, that the analysis and 

assessments of their dynamic performance is now an essential and very important part of system 

design. Dynamic analysis must be performed so that the system response to the expected ex-

citation can be predicted, and modifications made as necessary. It is also an essential technique to 
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apply to existing dynamic track systems, when considering the effects of modifications and 

searching for performance improvement. There have been very many cases of systems failing or 

not meeting performance targets because of oscillation fatigues or movement excessive amplitudes 

of one component or another. Because of the very serious effects, which unwanted oscillations can 

have on dynamic systems, it is essential that oscillation analysis must be carried out as an inherent 

part of their design, when necessary modifications can most easily be made to eliminate unwanted 

oscillations or at least to reduce their amplitudes as much as possible. 

In this Section we concentrate our attention on some general ideas associated with periodic 

non-harmonic solutions and to those topics that arise in a more valuable improving of studies of 

oscillatory track systems. The attention is focused on second-order linear systems since they form 

the basic structure for the posing and analysing of a broad spectrum of problems in track systems. 

It is well known that a discontinuous signal, like the square wave, cannot be expressed as 

a sum, even with an infinite number of terms, of continuous signals. Quite obviously, if the forcing 

waveform is subject to jump changes the linear smoothing procedure is not a good choice 

anymore, because all linear systems confuse and remove the high frequency components from the 

output waveforms. For this reason, when a source waveform with jumps is applied to a linear 

system it causes a typical effect of “edge blurring”.  

Taking into account the above requirements and insufficiencies of the methods based on 

Fourier series, which are up-to-date most commonly, used for studies of periodic non-harmonic 

states of track systems we propose in the sequel new method for obtaining, in closed form, the 

response of any linear system corresponding to piecewise-continuous periodic non-harmonic 

forcing terms. In our approach, the solution is exact, and by means of suitable unification of its 

piecewise representation, we can get with ease the exact expressions for its time derivatives. The 

method presented here depends on the carrying periodic waveform and of a concatenation 

procedure for the unified representation of composite periodic non-harmonic waveforms. We 

discus properties of linear systems with periodic non-harmonic excitations and develop 

a systematic Fourier series-less method for their studies.  

To cope with the undesirable effects we will describe discontinuous waveforms by using the 

carrying periodic waveform and its relatives such as switch-on and switch-of waveforms. Thus the 

waveform shown in Fig. 3 is represented as: 

 )]()()[,()]()()[,()()( 232212111 tgtgttHtgtgttHtgtg . (4) 

This intuitively appealing “switching rule” can be exploited in several ways. Using the switching. 

 

 

g(t) 

Fig. 3. Illustration of discontinuities of a forcing waveform 

 

approach (4) suggests the incorporation of a true smoothing element into the competition. From 

the standpoint of other approaches that pursue the same target, basically there is a new concept 

regarding the use of powerful developments. One of the advantages of introducing this additional 

complexity into the system is the ability to combine useful properties of each of the complex 

structures of the load. 

t 

t1  t2

g3(t)

g2(t)

g1(t) 

0

 
534



 

The Time Domain Analysis of Interactions in the Wheel – Rail Contacts Due to Discontinuous Time Periodic Loads 

To present the main idea of our approach we consider at first a linear system described by the 

following equation: 

 )()(4)(2)( tutxtxtx . (5) 

 

Fig. 4. Steady-state waveforms: a) forcing term, b) output terms 

 

where the waveforms of the system forcing term and the system response are denoted by u(t) and 

x(t), respectively. Let the forcing term takes the form shown in Fig. 4a. This means that in the p(t) 

variable domain we have u(t)=0.8r(t). 

In this case the self-frequencies of the system are as follows 

 31,311 js          js 2 . (6) 

The steady-state solutions for the periodic output waveform in successive semi-periods of the 

forcing waveform take the forms: 

– for 0  t    

 )]3sin()3cos([2.0)( 111 tBtAetx t , (7) 

– for   t  2  

 )]3sin()3cos([2.0)( 222 tBtAetx t , (8) 

where the integration constants A1, B1, A2 and B2 are to be determined from the respective 

conditions for the periodicity and analytical continuity of the total solution x(t).  

Taking into account the periodicity and analytical continuity conditions we get: 

)2()0(x         ),2()0( 2121 xxx  

and 

)()(x         ),()( 2121 xxx . 

Solving the above equalities with respect to the integration constants yields 

A1 = -0.3953, A2 = 9.9876, B1 = -0.2117, B2 = -3.6316. 

Substituting these values into (7) and (8) and mapping the solution of (5) into the p=p(t) 

domain gives: 

 
 )}3sin()](706.19177.1[)3cos()](1941.57988.4{[20   

)]()()[,()()( 121

pprppre)p(r.- 

pxpxpHpxtx
p- .  (9) 
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Figure 4b represents the forcing waveform u(t), in twice-reduced scale, the output waveforms 

of the displacement x(t) and the velocity (t). x

The above result can be easily generalized for system representations by a standard state 

variable equation: 

  = A1x(t) + g(t), (10) )(tx

where vectors x(t) and g(t) as well as constant element matrix A1 have appropriate dimensions. 

Here it is worth noticing that A1 must be non-critical with respect to T, i.e. the relation: 

 det(I  )  0, (11) 
T

e 1A

must be fulfilled. 

The discontinuous forcing term g(t) = g(t+T) can be represented by introducing the unit 

Heaviside step functions Hk(t,Tk), k = 1, 2, …n being shifted at the portions of the period with 

respect to the origin point t = 0, namely: 

 , (12) 
n

k
kkk ttTtHtt

1
11 )]()()[,()()( gggg

where gk(t), k =1, 2, …, n denotes k-th continuous term of the applied force in the subintervals of 

[0, T). Such a division yields the respective solutions xk(t) of x(t) that are determined as: 

 )(,
1)( tkfk

t

k et xJ
A

x , (13) 

for k = 1, 2, …, n, where xf,k(t) is a forced steady state (index f) solution of (10) and has the same 

waveform shape as that of gk(t) in the corresponding subinterval, and Jk is a constant vector to be 

determined. We can find vectors Jk by analyzing the periodicity condition for the total solution as 

follows: 

 n

T

f e JJ
A

x 1
1,1 )0( , (14)  

and from the continuity conditions it follows that: 

 )(1,1
1

,
1 )( kkfk

kT

kfk
kT

Te
k

Te xx JJ
AA

, (15) 

for k = 1, 2, …, n.  

Because the period [0, T) is divided into subintervals [tk, tk+1), k = 1, 2, …, n, then (14), (15) 

yield the block matrix equation: 
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00
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0

. (16) 

From the Kronecker-Weierstrass form [13] it follows that the system (16) has a unique solution 

{J1, . . . , Jn} for any T, T1, . . . , Tn, and A1 . Using the carrying periodic waveform p(t) we sew on 

continuous solutions in all subintervals during the concatenation process yielding periodic steady 

state solutions. Because the solutions are exact, the typical drawbacks of classical methods, such as 

the Gibbs effect [4], are avoided  

 

4. Dynamic model of wheel–rail contacts 
 

With the significant increase of train speed and axle load, the vibration of the coupled vehicle 

and track system due to corrugations and spoils of rails and wheels is presently strongly intensified 
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and the safe operation of trains is reduced. A further problem arises when the wheel–rail contact is 

subject to an action of time-discontinuous forces. It is well known that in the contact zone between 

railway wheel and rail the surfaces and bulk material must be strong enough to resist the normal 

(vertical) forces introduced by heavy loads and the dynamic response induced by track and wheel 

irregularities. The interactions of the wheel surface and the volume of a solid rail are very 

important [2]. Several modelling methods can be applied and in the course of the last decade new 

demands emerged in the analysis of wheel–rail contact. They are mainly connected with the 

reduction of costs of maintenance, technical diagnostics of the track and of railway vehicles, and 

elimination of negative effects on the environment [1, 3, 5]. 

In this section two-dimensional model of the wheel–rail pair of the wheelset is taken into 

account upon consideration of three subsequent layers. These include the rail, and the lumped 

representation of the sleeper and the ballast. The rail is discretely supported on the sleepers, and 

together ballasts/subballasts with subgrades elements, as shown in Fig. 5a, where two layers of 

discrete masses represent the rail and the sleeper with the ballast, respectively. The rail is not 

considered a Timoshenko beam, but as a result of ordinary beam theory - i.e. Bernoulli-Euler 

theory - with uniform flexible rigidity and added mechanisms effectively lowering the stiffness of 

the beam. Therefore, it can be divided into small segments so that a sleeper is assigned to every 

segment. The sleeper has both a mass and the pad between rail and sleeper and the ballast are 

replaced by springs and dampers. As a natural improvement a more complex model can also be 

considered. It must take into account the roll effect of the other wheel – rail pair of the wheel set. 

In light of this reason it is assumed for the developments that follow that the motion of each 

wheelset tracks follows exactly the geometry of the railway and lateral inclinations can simply be 

ignored during numerical simulation [5, 10].  

The rail structure is particularly subjected to dynamic load, which is induced by moving wheels 

of the track vehicles. When an elastic body, such as a wheel, is pressed against another elastic 

body, such as a rail, so that a normal load is transmitted and a contact area is formed. As the elastic 

deformation in the vicinity of the contact area is small its effect on the stress response cannot be 

neglected. Then, assuming that in the vicinity of the contact patch the curvatures of the wheel and 

rail are constant, the imprinted contact patch is small compared with the radii of curvature and the 

dimensions of the wheel and rails, the contacting bodies can be represented by elastic half-spaces 

and their shape can be approximated by quadratic surfaces [7]. The equation of motion of a beam 

is given by the 4th-order partial differential equation: 

 )()(
),(),(

2

2

4

4

sr xxtF
t

txz
M

x

txz
EI . (17) 

where the coordinate x represents the longitudinal position of the beam with respect to the left end 

support of the rail beam, xs defines the position of the sth sleeper, E is the elastic modulus of rail 

beam materials and I is the second moment of area, (x) is the Dirac delta impulse and F(t) is force 

developed at the sth rail/sleeper interface. 

Applying the finite difference method, a flexural deformation of the rail is expressed using the 

local coordinate y = x/h and the equation of motion of the entire system is obtained as: 

 ))()()( tttt F(KzzBzM , (18) 

where M, B, K and F(t) are the mass, damping, rigidity matrix and forcing vector, respectively. 

Usually it can be assumed that the material properties of wheel and rail are the same and in this 

case it can be shown that the tangential tractions do not affect the normal pressures acting between 

the bodies. Then with these assumptions, for the case where the wheels and rails are smooth, the 

dimensions of the contact area can be obtained from the theory of Kalker described in [9]. For each 

of such segments as that shown in Fig. 5c a system of equations can be formulated as follows: 
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where i = 1, 2, …., N with N denoting the total number of sleepers considered in the model. 
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Fig. 5. Model of the wheel–rail pair: a) wheel-rail contact, b) subdivision into segments, c) one segment 

 

The motion of the rail beam coupled with the sleeper and ballast is expressed as zi =z(yi,t), 

while zsi= zsi(t) describes the motions of the sleeper and ballast masses. Parameters: kp, ks, br and bs 

are the rail and ballast stiffness and damping coefficients, respectively. The rail mass per segment 

is represented by Mr, and Ms is the mass of the half of sleeper and ballast block together. 

The system vibrations are excited by the loading force F(t) exhibiting variations in time shown 

in Fig. 6a. It is worth noticing that the short duration pulses correspond to small dimensions of the 

contact areas. The duration and intensities of these pulses depend on the vehicle mass and the 

speed of the train. The idealized pulsed supplying force F(t) (Fig.6b) can be represented by more 

convenient formula when introducing the unit Heaviside functions Hk(t,Tk), namely: 

 , (20) 
3

1
2, ])[,()(

k
kkk ATtHAtF

where k,2 denotes the Kronecker delta operator.  

In what follows we focus the attention on one segment only and a multi segment system can be 

considered by appropriate extension of the presented approach. Applying the algorithm presented 

in the previous section we can express the resulting steady state coordinate z(t) as follows: 

 
3

1

11 )]()()[,()()()(
k

kkk tztzTtHtzTtztz , (21) 

where zk(t), k=1, 2, 3, 4 denote the coordinates excited by the parts of the supplying force period.  
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Fig. 6. Variations in time of the loading force pulses: a) real, b) ideal 

When t (Tk, Tk+1) and the supplying force is equal to A or 0 with k = 1, 2, 3, 4 we obtain: 

 ,)( 12,

21

21
4

1

, A
kk

kk
eBtz lk

m

ts

kmk
m  (22) 

with l=0 for k = 1 and 2 and l = 1 for k = 3 and 4. Constants Bm,k , m = 1, 2, 3, 4, are to be 

determined from continuity and periodicity conditions.  
 

 

Fig. 7. Simulation results: a) rail segment displacement, b) hysteretic loop of one period energy 
 
The solution has been easily determined by using the carrying periodic waveform p(t) and 

concatenation procedure in accord to (21). Performed computer simulations for a set of the system 

parameters: A=110 kN, T1=0.1s, T2 =0.4s, T3 = 0.5s, T = 2s and Mr= 110 kg, Ms = 520 kg, kr = 250 

N/m, ks=150 N/m, br =632 Ns/m and bs=520 Ns/m have yielded variations in time of the rail 

segment displacement presented in Fig. 7a. 

The presented methodology can be applied to predict the energy transferred from the wheel the 

rail segments during one period of the forcing term. In the case of the above considered systems 

parameters the one-period energy absorbed by the rail segment is expressed as an area 

encompassed by the cyclic trajectory on the energy phase plane. It is presented in Fig. 7b. 
 

5. Hysteretic loops of one-period energy 
 

The emphasis in this section is put on the somewhat complementary aspect of shaping the 

energy of elements in a track system, which directly involves the hysteretic loop in the energy 

phase plane, as opposed to the widely up-to-date used concept of the active, reactive and distortion 
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powers. As is well known, all up-to-date used methods for energy determination of a system 

element operating in a periodic non-harmonic steady state have many insufficiencies, which vary 

from one case to other and importantly depend on the assumed interpretation of particular 

components of the apparent power defined in the complex number domain [4]. 

Under periodic conditions the total energy W(nT) delivered by a force source to its load is 

measured as n multiple of the area WT of one period energy loop determined on the energy phase 

plane. Thus we have: 

 TnTt
nWtW |)( , (23) 

where the energy WT delivered by supplying force F(t)=F(t+T) to the load during one period 

equals: 

   )()()()()()(
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P
T tPdtvtdztFdttvtFW , (24) 

with v(t) and  denoting the velocity of the rail displacement and the force impulse.  
t

dFtP
0

)()(
 

 

Fig. 8. One-period energy loops for discontinuous loads: a) two segments, b) sleeper nonlinear model 
 

The above integral is of the Riemann-Stieltjes type and admits integration by parts in the form 
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where denotes the time derivative. )(tF

The important point to note here is a common feature of the energy hysteretic loops lying in 

that that the properties of this integral can be used to prove many identities concerning the analysis 

of the one-period energy, in particular, when the periodic forcing waveform F(t) exhibits 

discontinuities. Moreover, it follows from expression (24) that the area enclosed by a loop on the 

energy phase-plane with coordinates (F(t), z(t)) or, equivalently, (v(t), P(t)) determines the one-

period energy WT because in the periodic state all system waveforms exhibit the same period. 

Illustrations are presented in Fig.8a. The above-established model of the wheel-rail contact 

dynamics has been applied to that same roll plane but with taking into account a nonlinear 

characteristic of the sleeper with respect the ground. It is represented by the relation: 
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where constant parameters k2,  and  can be considered as bifurcating values. For  = 1.75,  = -1 

k2 =1.5 kN/m and other parameters as those considered in the case of Fig. 8a the determined loop 

of one period energy is shown in Fig. 8b. Thus, for any system operating in periodic non-harmonic 

conditions it is advantageous to produce directly the one-period energy WT without recourse to any 

forms neither of its power nor the Fourier series approach. The importance of the one-period 

energy loop lies mainly in the fact that it can be used to establish many useful expressions 

concerning the influence of input waveform shapes, parameter values and structures of systems on 

the quality of the energy delivered to loads.  
 

6. Material behaviour in wheel-rail contact 
 

The behaviour of wheel and rail materials under wheel-rail contact involves the following 

deterioration mechanisms: wear, plastic deformation and rolling contact fatigue [9]. The basic 

properties, which must have rails, are high abrasion resistance and flexural strength, and the 

corresponding hardness and elasticity. Therefore, to produce them used is the right stainless steel 

called a rail steel made of pearlitic steel. The main components of rail steel, in addition to Fe and 
 

 

Fig. 9. Images of a train rail: a) surface with characteristic undulations, b) defects in material crystalline structure 
 

carbon C (0.6-0.82%), there are various elements such as manganese, Mn (0.6 to 2.1%), silicon Si 

(0.1-0.90%), chromium Cr (  1.3%), phosphorus (  0.05%), sulphur (  0.05%) and others that 

improve the mechanical properties of the resulting material. On surfaces of railway rail heads and 

wheels it is easily seen under an optical microscope the surface layer with a thickness of 10 to 

100 m, which is white in colour after etching in a solution containing mainly nitric acid. It is 

called white layer (WEL) and has a significant impact on the life of the rails and wheels. When the 

thickness of WEL exceeds 50 m, formation of cracks leading to chipping takes places (Fig.9a).  

The identification of the energy delivered by the load to the rail and the role of both material 

properties and the rail-wheel contact conditions is critical in achieving improved component 

performance. Is also growing need to find a steel with a higher microstructural stability, allowing 

for longer life. Depending on the applied loads, the depth of deformation can be anything from 

a few microns to 5–10mm. Temperatures above 700C at the interface between wheel and rail lead to 

the transformation of pearlite to austenite. Austenitizing temperature of head rails is also lowered, 

and much, through the high density of crystalline defects (Fig. 9b). Rapid cooling of austenite leads 

to the formation of tetragonal-martensite supersaturated solution carbon in the iron. Studies show 

that in the formation of WEL grain size is significantly reduced and the formation of corrugated 

places is not a process of high temperature but is caused only by plastic deformation [2, 11]. 

 

7. Summary and conclusions 
 

Theoretical models describing the interaction between a railway wheel and the track rail were 

used for studying the rail vibrations. The main emphasis has been put on one-period energy 

a) b)
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delivered to the rail by the loading force exerted by the railway vehicle. It has been shown that the 

time domain representation of a system by means of the concatenation procedure, as opposed to 

the frequency domain representation by means of the system transfer function, has become more 

advantageous approach to the exhibition of system dynamics in periodic non-harmonic states. 

Especially, the introduction hysteretic loops on energy phase plane greatly advances the theory and 

enables the proper generalization of many fundamental concepts known for computer aided 

geometric designs to the world of periodic non-harmonic waveforms. 
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