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Abstract

The paper shows the successive steps of approximation of Picard unification for the solution of the non-isothermal
fluid flow in thin layer including inertia forces and apparent viscosities described by the non-linear dependences. In
this paper is presented a unified semi analytical method of solution of the asymmetrical, laminar, steady and unsteady,
non-Newtonian lubrication problem flow between two non-rotational in general, convex, differentiable and movable
surfaces when the time t depended gap between mentioned surfaces has quite an arbitrary geometry. The presented
considerations relate not only to the rotational cooperating surfaces but also to the arbitrary non-rotational surfaces
in general. The parallel and longitudinal intersections of mentioned surfaces are curvilinear and non-monotone in
general. We consider the non-Newtonian lubricant for non-linear constitutive equations taking into account Reiner
Rivlin power law relationship as well Rivlin-Ericksen formula for viscoelastic fluids.

The non-Newtonian properties create non-linear dependencies between strain and stress. Moreover, the dynamic
viscosity or apparent dynamic viscosity of numerous lubricant liquids with various additions often decreases along
with shear rate increasing during motion. Dynamic viscosity of lubricant fluids inside very thin micro and nano
boundary layers depends on Young’s modulus of the cell of surface body being in contact with the fluid.
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1. Introduction and General Basic Equations

The problem Pickard method of solution of lubrication problem had been considered already in
Authors papers [7,9]. In mentioned considerations, the computational model had been not
accommodated to the curvilinear coordinates in non-isothermal flow and had been not coupled
with the unified calculation algorithm. In contrary to the foregoing papers [7, 9] the presented
paper utilizes a new unified Pickard calculation algorithm not only for Reiner-Rivlin power law of
non-Newtonian lubricant but also for Rivlin-Ericksen viscoelastic oil properties. Such algorithm
satisfies stability conditions of numerical solutions of partial differential equations and gives real
values of fluid velocity components and carrying capacities occurring in journal bearing.

The Picard-unification of semi analytical method of solutions of non-Newtonian lubricant flow
in thin layer gap between two cooperating surfaces is related to Reiner Rivlin power law
relationship as well Rivlin-Ericksen formula for visco-elastic fluids. The analysis of the flow for
the viscous fluid flow will be performed by means of the following basic equations [1, 3]:

— equation of continuity:

op/ot +div(pv)= 0, (1)
— equation of motion:

p% + p(grad%vv — VX rotv ) = Div§, 2)

— equation of energy:
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div(i grad T)+div(vS)— vDiv(S) = p%(cVT). 3)
where:
t — time,
v — lubricant fluid velocity vector with components v;,
p — fluid density,
T - temperature,
¢y — fluid specific heat,
k  — fluid thermal conductivity,
S - stress tensor,

div — vector divergent,
Div — tensor divergent.

The fluid density p and apparent fluid viscosity n, are variable in (ou;, ow,03) directions and
depend on pressure, temperature and flow shear ratio. The inertia forces are taken into account.

2. Unification attempt of constitutive dependencies

The relationship between stress tensor S and displacement velocity tensor Tg=A; i.e.
constitutive equations are as follows [3]:

S=—pd + 1Ay, 4)

whereas unit tensor 6, strain tensor A; have following components: 6;, ©;. We introduce the
following notations: 6;j — Kronecker Delta, n, — apparent dynamic viscosity of non-Newtonian
fluid in Pas, p — pressure in Pa.

For Rivlin-Reiner fluid the apparent viscosity 1 has the following form [1, 13]:

n—1

My =2"" m(n) ’

1
—I; -1
ST

» =04, I, =%e;’jk€imn®jm®kn’ )
where I, I in s_l, s are the known invariants of displacement velocity tensor ©®; in s_l,
n — dimensionless flow index, m=m(n) — fluid consistency coefficient in Pas", eijk — tensor Levi-
Civity.

Rivlin-Ericksen model viscoelastic properties of lubricant fluids are described by means of
Rivlin-Ericksen constitutive relations. Hence their stress-strain dependencies have the following
form [2, 3, 13]:

S=—pd+ mAi+ a(A1)’ + Ay, (6)
where A;, A, velocity deformation tensors in st s

We can find such tensor X, which satisfies matrix equation: A,=X-A. Hence the dependence

(6) we can be written in the following approximate form:

S=—pd +A1( nodtaA; +BX), (7)
where the apparent viscosity 1. can be written in the form [3, 11]:
n,=n0+aA, +pX, n,=n,=n,+attA, +p X, (8)
where:
A=L+L" A,=grada + (grad a) + 2L"L, aELer(;—:, 9)
whereas:
A, — tensor of deformation of the first kind [sfl],
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A, — tensor of deformation of the second kind [s 7],

trA; — trace of tensor A,

L - tensor of gradient of fluid velocity vector [s '],

L" — transpose tensor of gradient of fluid velocity vector [s '],

a  — acceleration vector [m/s*],

o — first pseudo-viscosity experimental coefficient of the fluid [Pas’],

B — second pseudo-viscosity coefficient of the fluid [Pas?],

No — dynamic viscosity of motionless fluid or for the very slow movement of fluid [Pas],

N — dynamic viscosity of fluid in large motion [Pas],
Npe — apparent viscosity of liquid [Pas].

Majority of the experiments performed on the lubricant fluids indicate that dynamic viscosity
decreases along with shear rate increasing [8, 10]. Hence by virtue of the obtained experimental
data and using the least square methods, we can express the viscosity -shear rate relation in the
following form [8, 10]:

o =M , (10)
1+ A4-tr(A))+B-tr(A))tr(A,) + B-tr(A,)

Npe(4,B) =1, +

where: the coefficient A, experimentally obtained, reaches values from 8107 to 6-10'45, and the
coefficient B most often attains values from 110" s* to 2:107 s°.

3. Thin layer boundary simplifications

The solutions are made in local curvilinear and orthogonal coordinate system (o, o, o3)
connected with the one of movable surfaces, where a, denotes the direction of hap height as
indicated in Fig. la. The distance h(a, as, t) between two surfaces is significantly smaller than
other dimensions of indicated surfaces. The components of the displacement vector dr are
indicated in Fig. 1b. We have assumed that the fluid velocity components in a,03 directions have
the same order of greatness [7, 9].
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Fig. 1. Geometry of the region: a) two cooperating non-rotational surfaces, b) curvilinear orthogonal coordinates

system

According to the thin boundary layer simplifications the square of the element of length in the
flow region is determined as follows:

(dr)* = h(doy)? +h3(day)? +hi(daz)?, (11)

where:
hy=hj(aj,a3), hy =1, hz=h3(a,a3) (12)
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are the Lame’ coefficients in thin boundary layer depending on the shape of non-rotating surface in
general. For rotational surfaces h;=h;(a3), hs=h;(as). The local curvilinear and orthogonal
coordinates system (o) connected with the lower surface is presented in Fig. 2.

Fig. 2. Orthogonal curvilinear system connected with the surface, €;— versors in curvilinear coordinates, n — normal
vector

4. Non —Linear Basic Equations after thin layer boundary simplifications

Expanding equations (1)-(3) in oy (i=1,2,3) directions, taking into account layer boundary
simplifications, we obtain the following system of non-linear basic partial differential equations
describing the lubrication of two curvilinear non-rotational surfaces [1-4]:

Equation of continuity:

0

0 0 0
a—(ph1h3)+ _(W1h3)+ _(P"zhlh3)+ _(W3hl):0= (13)
t o, oa, O,

Equation of motion:
For Reiner-Rivlin and Rivlin-Ericksen in equation of motion we have respectively:

1 g 0 ov;
Xi(v1’v3):_h_£+6a |:77p(v1’v3)6 }
i 0Q; 2 2

9 o (v ) (oY | 4 i
0=-2L_ o (a+2p) LT ) i T
oa, oa, |\ O, oa, oa,

Equation of energy:

o ( or ov ) (v Y
K +7]p(V1,V3 e + 5 =Z(vy,v3,T),
oa,\ Oa, oa, oa, (15)

Zow Ty = pe| L 0T O v o |, p ohs)  O(vahhy)  Olvshy) |
ot h Oq, Oay hy Oay ) hhy| O« oa, O,

where for i=1,3 we have:

2
v v oy oy ov; S ov; LY Oh; vy, Ohy ] (16)

X;(v,v3)=p| —+ l
i(V1,v3) p[ or  h da, " Oa, hyda; hhy oa,, hhy Oq

For Reiner-Rivlin and Rivlin-Ericksen we have respectively: ny(v1,v3,n), or np(vi,v3,a,B). The
unknown functions are: velocity components v, v, v3, pressure p, temperature T.
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5. Linearization of apparent viscosity and provided solutions using small parameter method

For Rivlin-Reiner power law fluid the solutions were defined in following form of uniformly
convergent power series developed in terms of small parameter [6, 7]:

_ j
v =V + v et (7, ) vy e

P=DPao+Vular +t (1) P+ s (17)
T=Tu+7, T+, ) Ty+...

for 1=1,2,3; j=0,1,2,... y, =(n—1)/2 where 0<n<3/2 thus the small parameter y,, is less then

+1/4 and greater than —1/2. In order to attain the linearization of apparent viscosity (5), after
boundary simplifications we expand function in closed interval [1,n] or [n,1] for 0<n<3/2 using
Taylor series in neighbourhood of point n=1 with respect to the small parameter in following form
[7,9]:

o Y (o, Y| .
np(vl’v3an):npr:m(£] +(£] :770[1+7/n77pr1+"'+(}/n)]77prj+“']7 (18)

where: 1o — characteristic value of classical dynamic viscosity, 1 — dimensionless expansion
coefficients for j=0 we have N, =1 and dimensionless My =Npi(vi,v3) for j=1,2,... .

For Rivlin-Ericksen type of non-Newtonian fluid the solutions were defined in following form
of uniformly convergent power series developed in terms of small parameter [10]:

— J
Vi=Vio+tD-vy+..+D v+,

T=T;+D-Ty+..+D -Ty+...,
D=D,=%2  or D:Dﬁsﬂ—“’, (20)
Mo Mo
where: i=1,2,3; j=0,1,2,... , ® — angular velocity of journal, D — Deborah number.
Now we expand viscosity function in open interval —1<D<I1 wusing Taylor series in
neighbourhood of point D=0 with respect to the small parameter in following form:

np(vl,v3,a,ﬂ): Npe = 770(1+D77pel +...+Dj77pej +) (21.1)

where: mno — characteristic value of classical dynamic viscosity, npe; — dimensionless expansion
coefficients whereas for j=0 we have Ny =1 and dimensionless Npej =Npej(V1,V3) for j=1,2,... [13]:

1 [0n,,(v.v,.D) 1 |0*7,.(v,v;,D)
npel(vpvz):F{# s M) = (21.2)
) D=0 ’ D=0

6. Solution of the system of partial basic equations as terms of series

Putting series (17), (18) or (20), (21) into the system of non-linear equation (13), (14), (15) and
multiplying the series by Cauchy method, equating the coefficients of the like powers of small
parameters, we obtain a sequence of following systems of non-linear (for X;=0), or linear (for
X;=0) partial equations [9, 12]:

1 apdj 0 aVij
Xi(VigsVigseres Vi) +———= '
U( i0> Vil J) o o,

9
" s.) =13, 2
I oa, oa, ) o, (oS, ) (22)
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op,; OF .
oL, 23)
oa, oa,
0 0 0 0
0.0—ohhy )+—— iy )+ —— Dy |+ —— h)=0, 24
;0 8t('01 3) oa, (pvl‘/ 3) o, (p"z‘/ 1 3) oa, (pv3‘/ 1) (24)
0 [ e, G.=Z (vigrsVii; Tyos Tpoees T ) (25)
o, \ < oar, MG, i W0 VigsLaos Lo dgi)s
for i=1,3; j=0,1,2,..., C=(1+2p/a)no/® where
ov, ov, ov,
Sio EO, Sil = aaz 77p1: Si2 = aaz 77;72 +$77p1,..., Sij :Sij(vlj—l’v3j—1)’

G, =1,G,+2G,, G,=1,G,+2n,G,, +2G,+G, ...,
F,=0, F,=G,, F,=2G,, F,=2G,+Gy,... F,=F,(v, ;,vs, )
7,1 :77,;1("10""30 )a 7,2 :77,;2("11:"31)9---a 17, anj(vlj—l’VSj—l)’ (26)

2 2
2"10 n vy , G, = vy vy, " vy OVs) ’
a, oa, oa, Oa, Oa, Oa,

2 2
G. - ov,, Ov,, N 0vs, Ov;, G. - ov,, N ovy,
2 ba, da, 0a, da, " |oa, oa, )

G,

where Mp= Nprj OF Npi= Npej-

Analogically we obtain functions: Zy, Z;, ... . System of Eqs.(22)-(25) for X;=0, Z=0
determines following unknown functions: vij, vaj, v3j, pgj, Tqj for i=1,3; j=0,1,2,... .

Since the two cooperating surfaces are moving, and there can be slip, hence the boundary
conditions (for i=1,2,3; j=0,1,2,...) have the following form [5, 7, 9]:

vi(ap,ay =0,a5,t) =06,;0U (o), a3,1), 27)

where 0o denotes Delta Kronecker Symbol. Velocities and slips on the journal and sleeve surface
U;=0, U;,>0 can be continuous, constant or variable but not arbitrary in general.
—  We put j=0, S;;=F¢=0 in system (22)-(25). Hence system determines basic functions:

V10, V20, V30, Pao» Tao . (29.0)

— We put j=1, Si;=F¢=0, S;1, Fi, G; and solutions (29.0) in system (22)-(25). Hence system
determines following correction functions:

Vi1, V21, V31, Pdl, Td] ie. DV][, DVZ], DV31, Dpd], DTd]. (291)

—  We put j=2, Sij»=F¢=0, S;i, F1, Gi, Siz, F2, G2, and solutions (29.1) in system (22)-(25). Hence
system next correction functions:

Vi2, V22, V32, Pd2, ng i.e. DZV]Z, D2V22, D2V32, szdg, DZng. (292)
— After J steps we obtain final corrections:
Vij V2, V3j, Ddj de ie. D]VU, D]VZ_], D]V3J, D]de, D]de, (29])

7. The method of Picard successive approximation steps of solutions of basic equations

When we are neglecting the inertia forces i.e. X;;=0 and convection transport of energy as well
pressure dissipation i.e. Z=0, then linear set of partial differential equations (22)-(25) gives
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following solutions (29.0), (29.1), ..., (29.j) namely:

0 0 0 0 0 -
v mv vy = v v 2D py x pQ Ty ~ T for j=0,1.2, ... (30)
We put functions (30) into terms X;;,Z; i.e.:
0) _ 0) (0 0 0) _ 0 0). 7(0) (0 0)
X0 =X,00 VD Vi), Z0 = 2,009 T T T 31)

for i=1,3; j=0,1,2,... .

In partial differential equations (22)-(25) we are replacing the inertia forces i.e. Xj and
convection transport of energy as well pressure dissipation i.e. Z;, by functions (31). Hence such
linear set of partial differential equations (22)-(25) gives following solutions:

1 1 1 1 1 -
Vi zvl(j), vy, zvé}, V3, zvgj), Py = pz(ij)’Tdi sz(j) for j=0,1,2,... . (32)
We put functions (32) into terms X;;,Z; 1.e.:
D _ o M (1 D _ 0] 0. @ 20 )
XD =X, 00 v v, 20 =Z,00 VTR T LT (33)

for i=1,3; j=0,1,2,... .

In partial differential equations (22)-(25) we are replacing the inertia forces i.e. Xj and
convection transport of energy as well pressure dissipation i.e. Z;, by functions (33). Hence such
linear set of partial differential equations (22)-(25) gives following solutions:

2 2 2 2 2 L
v mv vy v v a3 p x pQ T A T forj=0,1.2,... . (34)

After k steps inertia force terms and convection transport terms for i=1,2,3; j=0,1,2,... go to the
form:

k) _ k) (k) k o _ (k) k) (k) (k) )
XP =x, 00 v, v, 20 =708, VP T T, LT, (35)
whereas linear set of partial differential equations (22)-(25) gives following solutions:

k+1 k+1 k+1 k+1 k+1 i
Vi zvl(j ),vzj zvéj ),V3j zvgj )’pdj zp;j ),de szg. ) for j=0,1,2,... . (36)

If for sufficient many steps and negligibly small value 6 are valid following inequalities:

G<o, |1 -1y <0, (37)

) (k+D) (k)
v =vy | <0, ‘pdi ~ P

then for i=1,2,3; j=0,1,2,... are valid following limits
X = X 13 ZO = 72 1imv® = v 14 ©— o 1imT® =T,.. (38
lim X5 i limZ; Hlimvy =ve. limey” =Py IimTy =Ty» (38)

k—o0 k—o k—o0 k—o k—o0

1.e. solutions (36) have final form.

8. Conclusions

In this paper, the Lipschitz Picard’s method of successive approximations of solutions of
hydrodynamic lubrication problem is presented for the non-linear fluid mechanics equations that
describe non-Newtonian fluid flow using Reiner-Rivlin and Rivlin Ericksen model describing non-
linear apparent lubricant viscosity. The convergence process of the sequence of succeeding
approximation solutions has been considered.
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