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Abstract

An important issue, which should be taken into account while analyzing the dynamics of vehicles moving along an
uneven road surface, is the proper representation of its real shape. Two mathematical models of the road surface —
continuous and discrete were considered in the method presented in this paper. These models were used in the
computer simulations of dynamics of a special vehicle with a high gravity centre, which moved along an uneven road
surface. The simulations were carried out using the worked out program package, in which four main modules could
be differentiated such as: preprocessor, solver, postprocessor and 3D animation. This package was implemented
combined with the Blender graphics environment — in authors’ opinion it is an innovative approach. Owing to this
models of uneven road surface (theoretically of any shapes) can be built and they are input data for both the solver
and animation modules. Additionally, the Blender tool can be used to prepare 3D objects, which are used in the
animation process of the moving model of a vehicle. According to the authors’, developed program package developed
on the basis of the mathematical models for the analyzed vehicle and road surface can be interesting for engineers
designing special vehicles. By performing different types of the computer simulations, the engineers can improve the
vehicle being built and reduce cost of its road test.
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1. Introduction

When the vehicle dynamics is analysed, an essential issue while developing its mathematical
model is the knowledge on forces and moments of the road surface, which act on the wheels.
Mathematical models of tires of different complexity can be used to determine those forces and
reaction moments. In the doctoral dissertation [5], which was basis for this article, three models of
tires — Fiala, Dugoff-Ufelmann and Pacejka, have been used. In each of these models, it is
assumed that the forces and moment of the road surface reactions are applied in one point — in the
so-called contact point C. In the quoted doctoral dissertation, four algorithms — VectorCross,
Plane, 4Points and Simple, were developed to determine a position of this point. Each of the
algorithms mentioned is based on the known mathematical model representing the uneven road
surface. Two such models, namely continuous and discrete ones, are presented in this article.

2. The continuous model of the road surface

In the continuous model, the Bicubic interpolation [3] was used for the mathematical representation
of the road surface, thus for determining the three-dimensional interpolation surface. The input data
are here the points in the three dimensional space — so called control points (interpolation nodes).
The points located between these nodes are searched.

Let P/; and P' mean the xy plane projections of the control point P.;(x;, y:,z:;) and the searched
point P(xp,yp,zp) respectively, being on the interpolated surface, of which first two coordinates
xp and yp are known. Then, the third coordinate zp of the searched P point is determined by



S. Tengler, A. Harlecki

transforming the given grid cell specified by points P’;, P.i;, Piij+1 P, into the square of the
side length equal to 1 (Fig. 1).
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Fig. 1. Transforming the selected grid cell

After such transformations, coordinate zp is calculated according to the formula:
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are the new coordinates of point P.

Formula (1) contains 16 unknown coefficients a;;, which are determined according to the method
described in the doctoral dissertation [5].

From analyses made within the scope of the cited doctoral dissertation, it results that smooth
interpolation surfaces are obtained when the continuous model is used, and they have an advantageous
influence on efficiency of the calculation process performed in the scope of the analysis of the
vehicle dynamics. However, the continuous model does not allow imitating unevenness of the road
surface, which fragments are flat in some places (e.g. a vehicle drives through a speed bump on one
side, and on the other it drives over the flat surface). In such a case, the discrete model should be
taken into account.

3. The discrete model of the road surface

In the discrete model of the road surface developed by the author of the cited doctoral dissertation,
it was assumed that this surface is modelled by the surface area built out of triangles (Fig. 2).
A number of triangles and their sizes are selected to represent the real shape of the road surface as
accurately as possible.
The surface area made of the triangles can be defined on the basis of two sets:
1. SP ={B(x1,y1,21)sec, B(Xi, Vi, 2i )y eees Bo (X, Y, 20 )} — a set of all points from which the triangles
are built, where P.(x;,yi,zi);
2. SM = {V(l),..., v, V<’”)} — a set of 3-clement vectors defining all the triangles, that is
v =[0I where v, v V() e {1,...,n} are indexes of the points (from the S* set)
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Fig. 2. Example of the road surface fragment modelled by triangles

being vertexes i-th of this triangle. It means mathematically that for each element of the S set

a mapping function, which indicates that the v element from the S set describes a triangle of

vertexes P, 0, P(z) P(z) was determined in a form of: v > {P, (z) P(z) P(z) }.

It should be emphas1sed that one element (a point) from the S set can be a common element
(a point) for two or more triangles simultaneously. As in the continuous model, a position of the
P(xp,yp,zp) point being in the surface area in question is searched and its coordinates xp and yp
are known (Fig. 3). The zp coordinate of point P can be determined in a way described further in
this article.

Let point P be in the area of the £ triangle of vertexes Pw ,Pw,Pw (Fig. 3).

1 2 3

Py,

P

P(xp,yp.2p)

(xp,yp)
Fig. 3. Position of the searched point P on the surface area modelled by the triangles

The vertexes of this triangle determine the plane of which the normal equation has the following
form [1]:

ePx+ePy+ePz460 =0, @)

where:
e e elf) —elements of the é* versor normal to the k triangle surface area,
0" = —(eMx; +ely; +ePz;), where [ should be taken as any number from set {v*,v{" v{y .
Versor € can be determined by the vector product:
k k)
"(k) _ p§2) ng?a

(k)

3)
‘pl 2 ><p13

where:
X) _ the vector with the beginning in point P and the end in point Py ,
1 2

P>
) _ the vector with the beginning in point P and the end in point £ .

Pis
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Having the plane equation determined in (2), the searched zp coordinate of the point P can be
determined from the formula:

k k
__efc )xp+e§ yp+0® )
Zp = e(k) D
z

for e #0, excluding the situation when the & triangle plane is perpendicular to the xy plane —

those cases do not concern this work.

In the described procedure, it was assumed that the vertexes of the triangle, on which there is
point P, are known. However, identification of this triangle is not a trivial task. It becomes
especially difficult in a case of computer simulations where short time of calculations is usually
significant. Therefore, it is essential to develop an appropriate algorithm of the triangle identification
of the surface area in question. The trivial solution of the triangle identification problem consists of
searching the whole set of triangles S and checking if the searched element is in the surface area
of this triangle. In this case, for each triangle (k= 1,...,m) the plane equation (2) should be determined,
and it should be checked if the P point is in its fragment specified by vertexes B,w, P, Pw . Such
an algorithm does not belong to efficient regarding calculating, and because of three dimensionality,
it may prove to be problematic. Much better results can be obtained by reducing the problem to
a two dimensional issue and narrowing appropriately the set of the searched triangles. In this work,
the developed algorithm was divided into two stages.

Stage I — reducing the problem to a two dimensional issue

Let S ={R....P,...,P,} mean a set of the points being projections of the points from the S
set on the xy plane. A two dimensional (flat) map in which there are projections of the triangles of
the area in question, is obtained in such a way. Then, a triangle is searched in this map; the triangle
that is appropriate three points from the S* set, to which point P’ is a projection of the P point on
the xy plane (Fig. 4). When the vertexes of this triangle are known, there are also known vertexes
determining a position of a triangle corresponding to it in the three dimensional space.

% o Searched points

Yp =P 'p’

Xp X

Fig. 4. Projection of the surface area on the xy plane

Stage II — limiting the search set
A distance of a P'(x;,y;) point from the P'(xp,yp) point is determined by the formula:

d; =| P'=Fl=\(xp = x1)* = (v = 0)* . ()
Let P mean such a point of the S set, of which the distance (5) is the shortest. This point
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will be called the nearest neighbour. Then, the hypothetical triangles, to which point P’ may belong,
are only those for which point P/ is their common vertex (Fig. 5). There is a problem to find this
point — a way of its searching can have a significant influence on efficiency of the algorithm in
question. A typical solution based on determining the distance (5) for all z points is not the optimal
solution.

y
T P T
yk i _ - a8 —k— o
yP = . P!
. =
xP xk X

Fig. 5. Searched triangles (marked in grey)

In this work, an effective algorithm based on the data structure of the kd-tree type was used for
searching the nearest neighbour (Nearest Neighbour Search, abbreviated to NNS). This algorithm
was presented in details in the doctoral dissertation [5] on basis of the information contained in [2, 4].
The final identification process of the “appropriate” triangle of the surface area in question consists
of specific steps, which are presented, in the diagram (Fig. 6).

Determining discrete Determining a set of triangles for which
surface area point P, is the common point
v

Projection of the surface D .. ol hich
area on plane xy etermining triangle to whic

(determining set ") point P’ belongs

Decomposition of set S
using kd-tree structure

Algorithm NNS

Determining point P (the nearest ||—
neighbour of point P")

Fig. 6. Stages of triangle identification
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The presented procedure in the case of the surface area made of triangles can be used also for
a surface area made of quadrangles (e.g. rectangles). An example of the surface area made of
rectangles, which constitutes a model of the road surface, is presented in Fig. 7.

Fig. 7. Exemplary model of the surface made of rectangles

The surface areas made in such a way cannot contain ,,false quadrangles” (figures of which
vertexes are not in the same plane). An exemplary model of the road surface containing “the false
quadrangle” is presented in Fig. 8.

,»Lhe false quadrangle” of which vertexes
are not in same plane

Fig. 8 Exemplary model of the surface area made of ,, the false quadrangles”

If the surface area is made of quadrangles, then it is sufficient to choose any of their three
vertexes to determine equation (2). Considering an additional possibility of building the discrete
model, the road surface can be mapped in a more “flexible” way — using both quadrangles (e.g.
rectangles) and triangles (Fig. 9).

Fig. 9. Example of the road surface model made of the triangles and the rectangles

Then, some fragments of the road surface can be modelled by quadrangles, and if not, it can be
done by triangles. In such a way, according to the authors, the road surface modelling can become
more intuitive.
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4. Computer simulations

In order to represent particular models of the road surface, there were four computer simulations
made. In each of them, the modelled vehicle moved over the surface of different shape. Models of
the uneven road surface were made in the Blender environment, and then they were imported in the

developed program. Each of the surface models were characterized by the parameters presented in
Tab. 1.

Tab. 1. The road surface model — the assumed parameters

Parameter Description

Xmsins Xmaxs Ymins Vinaxs Zmins Zmax [M] Maximum and minimum values of point coordinates of the road
surface model

Upp A number of vertexes in the discrete model or a number of control
points in the continuous model

Uro A number of triangles or rectangles in the discrete model or
a number of grid cells in the continuous model

The computer simulations were performed by the computer program, developed within the scope
of the cited doctoral dissertation. The mathematical model of the vehicle used in the computer
simulations is described in this work too.

Example |

The road surface model made is presented in Fig. 10. It consists of two flat fragments neighbouring

to the projecting “bump”. Since there are no surface slopes towards versor Y (of the system{}),
the whole surface model was made by the rectangles.

5 Blender [DAUczelnia\Praca driAppsiTenglerOpenGLiottware\ Tengler. OpenGL Engine\Madels 3ds\blender DrogaiPL-garb_. = | 5 [t

[f 5= File Agd Tmelne Game Render Help | =[SR2-Model %[ =[scEscens o

/ Bumb( <z =02

- &
e

Fig. 10. Road surface model made in the Blender environment
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The values of the parameters, as in Tab. 1 are: Xuim =2, Xmax =11.5, Yiin =2, Vinaxr =2,
Zmin IO, Zmax 20.2, Uwp =40, Uro =34 .

The surface model prepared in such a way was imported in the discrete form in the developed
program.

A drive of the vehicle “straight on” over the projecting bump was simulated; and it is shown in

the screen shots made during the animation (Fig. 11).

B —— R . e e B ]

S g T oo e Sl S —— e S g e Sl

Fig. 11. Examples of the screen shots made during the animation

Example II

In this example, as in the previous one, the road surface model was prepared, and then it was
imported as the discrete model in the developed program. The surface model made is characterized
by a changeable profile both towards versor X , and ¥ (Fig. 12).

The parameter values of the presented model, as in Tab. 1, are: xum =-2.5, Xpa =12.7,
Vmin = =35, Ymax =3.5, Zmin =0, Zmax =0.47, uwp =207, uro =344 — unlike in the model used
in the first example, the number of quadrangles is greater than the number of the vertexes.

Examples of the screen shots made during the animation, presenting the track over which the
vehicle moved, are presented in Fig. 13.

© Trangles (D =22 047

Rectangles (2 = ()

Fig. 12. Road surface model

Example III

Within the scope of another simulation, the model of the road surface, presented in Fig. 14, was
made. This model was imported as the discrete model in the developed program.

Values of the appropriate parameters of the assumed road surface model are: X = -2, Xpar =51,

Vmin =_9, Vmax =9, Zmin =_2, Zmax =0, Uwp =633, uro =1104.
The screen shots presenting the track of the moving vehicle are presented in Fig. 15.
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Fig. 13. Examples of the screen shots made during the animation

=

Sub-areas of /
different shapes /

Fig. 14. Road surface model
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Fig. 15. Examples of the screen shots made during the animation

Example IV

In the last example, the road surface model was prepared, and the model was imported as the
continuous model in the developed program. The grid of the control points of this model is presented
in Fig. 16.

Values of the parameters of the presented surface model are following: Xuin =2, Xpaxr =49,
Vmin = —8, Ymax 28, Zmin 2—0.8, Zmax 21.2, Uwp =128 , Uro =165.

Selected phases of the modelled vehicle drive are presented in Fig. 17.
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OD<z =12

Fig. 17. Examples of the shot screens made during the animation.

5. Conclusions

The computer simulations presented in this article, are only a part of works performed by the
authors. The presented models of the road surface enable to conduct a series of other computer
simulations, which can include different types of the road surface unevenness. For example, in
doctoral dissertation [5], a simulation of a drive of the vehicle over smooth and sharp unevenness
was described, and the calculation results were compared with the results obtained in an experimental
way — for this purpose there were experiments carried out using specialist measurement equipment.
Additionally, in work [6] the authors determined the essential parameters of the vehicle, including
an inclination angle of the road surface, at which a loss of its stability takes place.

The main advantage of the discrete model of the road surface is a possibility to take its unevenness
into account together with the neighbouring flat areas — this case was presented in example I. It is
difficult to achieve in the continuous model — because the grid of the control points has to be
compacted appropriately in the points where there are flat fragments. An additional advantage of
the discrete model is a possibility to obtain fragments of the surface of different shapes (Fig. 14) —
in the continuous model, due to the point grid structure, it is impossible. While analyzing advantages
of the continuous model, it was found that courses of the results of the calculations, made by its
use, had a “smoother” character (no “sharp oscillations™) than in the case of the discrete model. This
effect can be obtained in the discrete model by compacting the division into polygons, although it
extends the calculation time.

In this article, the authors conducted also an analysis of the time of calculations made using the
discrete model, compacting the division into polygons. For example, by increasing a number of the
polygons four times in the first example presented, the obtained calculations times were only 2.5
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longer than in the case of the non-compacted road surface model. Such a relationship of the
calculation time with reference to the density of the division of the modelled road surface into the
polygons confirms applicability of the NNS algorithm.
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