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Abstract

An important issue, which should be taken into account while analyzing the dynamics of vehicles moving along an 

uneven road surface, is the proper representation of its real shape. Two mathematical models of the road surface – 

continuous and discrete were considered in the method presented in this paper. These models were used in the 

computer simulations of dynamics of a special vehicle with a high gravity centre, which moved along an uneven road 

surface. The simulations were carried out using the worked out program package, in which four main modules could 

be differentiated such as: preprocessor, solver, postprocessor and 3D animation. This package was implemented 

combined with the Blender graphics environment – in authors’ opinion it is an innovative approach. Owing to this 

models of uneven road surface (theoretically of any shapes) can be built and they are input data for both the solver 

and animation modules. Additionally, the Blender tool can be used to prepare 3D objects, which are used in the 

animation process of the moving model of a vehicle. According to the authors’, developed program package developed 

on the basis of the mathematical models for the analyzed vehicle and road surface can be interesting for engineers 

designing special vehicles. By performing different types of the computer simulations, the engineers can improve the 

vehicle being built and reduce cost of its road test. 
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1. Introduction 

When the vehicle dynamics is analysed, an essential issue while developing its mathematical 

model is the knowledge on forces and moments of the road surface, which act on the wheels. 

Mathematical models of tires of different complexity can be used to determine those forces and 

reaction moments. In the doctoral dissertation [5], which was basis for this article, three models of 

tires – Fiala, Dugoff-Ufelmann and Pacejka, have been used. In each of these models, it is 

assumed that the forces and moment of the road surface reactions are applied in one point – in the 

so-called contact point C. In the quoted doctoral dissertation, four algorithms – VectorCross, 

Plane, 4Points and Simple, were developed to determine a position of this point. Each of the 

algorithms mentioned is based on the known mathematical model representing the uneven road 

surface. Two such models, namely continuous and discrete ones, are presented in this article. 

2. The continuous model of the road surface  

In the continuous model, the Bicubic interpolation [3] was used for the mathematical representation 

of the road surface, thus for determining the three-dimensional interpolation surface. The input data 

are here the points in the three dimensional space – so called control points (interpolation nodes). 

The points located between these nodes are searched.  

Let  and jiP , P

)Pz

 mean the xy plane projections of the control point  and the searched 

point  respectively, being on the interpolated surface, of which first two coordinates 

xP and yP are known. Then, the third coordinate zP of the searched P point is determined by 

),,(, iiiji zyxP
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transforming the given grid cell specified by points jiP , , jiP ,1 , 1,1 jiP 1, jiP , into the square of the 

side length equal to 1 (Fig. 1). 
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Fig. 1. Transforming the selected grid cell

After such transformations, coordinate zP is calculated according to the formula: 
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are the new coordinates of point P.

Formula (1) contains 16 unknown coefficients ai,j, which are determined according to the method 

described in the doctoral dissertation [5].

From analyses made within the scope of the cited doctoral dissertation, it results that smooth 

interpolation surfaces are obtained when the continuous model is used, and they have an advantageous 

influence on efficiency of the calculation process performed in the scope of the analysis of the 

vehicle dynamics. However, the continuous model does not allow imitating unevenness of the road 

surface, which fragments are flat in some places (e.g. a vehicle drives through a speed bump on one 

side, and on the other it drives over the flat surface). In such a case, the discrete model should be 

taken into account. 

3. The discrete model of the road surface  

In the discrete model of the road surface developed by the author of the cited doctoral dissertation, 

it was assumed that this surface is modelled by the surface area built out of triangles (Fig. 2).  

A number of triangles and their sizes are selected to represent the real shape of the road surface as 

accurately as possible. 

The surface area made of the triangles can be defined on the basis of two sets: 

1.  – a set of all points from which the triangles 

are built, where ;  

)},,(...,),,,(,...),,,({ 1111
)(

nnnniiii
P zyxPzyxPzyxPS

),,( iiii zyxP

2. )()()1()( ...,,...,, mivS vvv  – a set of 3-element vectors defining all the triangles, that is 
(P)Tiiii vvv ][ )(

3
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2
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1
)(v , where }...,,1{,, )(

3
)(

2
)(

1 nvvv iii  are indexes of the points (from the S  set)  
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Fig. 2. Example of the road surface fragment modelled by triangles 

being vertexes i-th of this triangle. It means mathematically that for each element of the S
(v)

 set 

(a p

P be in the area of the k triangle of vertexes   (Fig. 3). 

a mapping function, which indicates that the v
(i)

 element from the S
(v)

 set describes a triangle of 

vertexes )(
3

)(
2

)(
1

,, iii
vvv PPP , was determined in a form of: },,{ )(

3
)()(
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i PPPv .

It should d that one element (a point) fro
2

m the S
(P)

be emphasise  set can be a common element 

oint) for two or more triangles simultaneously. As in the continuous model, a position of the 

),,( PPP zyxP  point being in the surface area in question is searched and its coordinates xP and yP

ig. 3). The zP coordinate of point P can be determined in a way described further in 

this article.
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Fig. 3. Position of the searched point P on the surface area modelled by the triangl

The vertexes of this triangle determine the plane of which the normal equation has the following 

for

0 ,  (2) 

here:

 – elements of the  versor normal to the k triangle surface area,  
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H (2) ina  of the point P can be 

det

aving the plane equation determined in , the searched zP coord te

ermined from the formula: 
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for , excluding the situation when the k triangle plane is perpendicular to the xy plane – 

assumed that the vertexes of the triangle, on which there is 

poi

sue

g projections of the points from the S
(P)

set

0)(k
ze

those cases do not concern this work. 

In the described procedure, it was 

nt P, are known. However, identification of this triangle is not a trivial task. It becomes 

especially difficult in a case of computer simulations where short time of calculations is usually 

significant. Therefore, it is essential to develop an appropriate algorithm of the triangle identification 

of the surface area in question. The trivial solution of the triangle identification problem consists of 

searching the whole set of triangles S
(v)

 and checking if the searched element is in the surface area 

of this triangle. In this case, for each triangle (k = 1,..., m) the plane equation (2) should be determined, 

and it should be checked if the P point is in its fragment specified by vertexes )(
3

)(
2

)(
1

,, kkk
vvv PPP . Such 

an algorithm does not belong to efficient regarding calculating, and because of t nality, 

it may prove to be problematic. Much better results can be obtained by reducing the problem to 

a two dimensional issue and narrowing appropriately the set of the searched triangles. In this work, 

the developed algorithm was divided into two stages.  

Stage I – reducing the problem to a two dimensional is

hree dimensio

Let }...,,...,,{ 1
)(

ni
P PPPS  mean a set of the points bein

on th ensional (flat) map in which there are projections of the triangles of 

the area in question, is obtained in such a way. Then, a triangle is searched in this map; the triangle 

that is appropriate three points from the S
(P)

 set, to which point P

e xy plane. A two dim

 is a projection of the P point on 

the xy plane (Fig. 4). When the vertexes of this triangle are known, there are also known vertexes 

determining a position of a triangle corresponding to it in the three dimensional space. 
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Fig. 4. Projection of the surface area on the xy plane 

Stage II – limiting the search set 

t from theA distance of a ),( ii yxP  poin  ),( PP yxP  point is determined by the formula: 

2)(|| yyPPd . (5) 2)( iPiPii xx

Let  mean such a point of the kP )(PS  set, of which the distance (5) is the shortest. This point 
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wil al hen,l be c led the nearest neighbour. T  the hypothetical triangles, to which point P  may belong, 

are only those for which point kP  is their common vertex (Fig. 5). There is a problem to find this 

point – a way of its searching n have a significant influence on efficiency of the algorithm in 

question. A typical solution based on determining the distance (5) for all n points is not the optimal 

solution.

ca
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Fig

5. Searched triangles (marked in grey) 

In this work, an effective algorithm based on the data structure of the kd-tree type was used for 

sea

. 6. Stages of triangle identification 

rching the nearest neighbour (Nearest Neighbour Search, abbreviated to NNS). This algorithm 

was presented in details in the doctoral dissertation [5] on basis of the information contained in [2, 4]. 

The final identification process of the “appropriate” triangle of the surface area in question consists 

of specific steps, which are presented, in the diagram (Fig. 6). 

Start

Determining discrete 

surface area 

Projection of the surface 

(de ) 

area on plane xy

termining set (PS )

Decomposition of set )P(S

reusing kd-tree structu

Determining point earest kP  (the n

neighbour of point P )

Determining a set of triangles for which 

point kP  is the common point 

Determining triangle to which 

point P  belongs 

End

Algorithm NNS 
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The presented procedure in th of triangles can be used also for 

a su

e case of the surface area made 

rface area made of quadrangles (e.g. rectangles). An example of the surface area made of 

rectangles, which constitutes a model of the road surface, is presented in Fig. 7. 

{} Ẑ

X̂
Ŷ

Fig. 7. Exemplary model of the surface made of rectangles 

The surface areas made in such a way cannot contain „false quadrangles” (figures of which 

vertexes are not in the same plane). An exemplary model of the road surface containing “the false 

quadrangle” is presented in Fig. 8. 

{} Ẑ
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„The false quadrangle” of which vertexes 

are not in same plane 

Fig. 8 Exemplary model of the surface area made of „the false quadrangles” 

If the surface area is made of quadrangles, then it is sufficient to choose any of their three 

vertexes to determine equation (2). Considering an additional possibility of building the discrete 

model, the road surface can be mapped in a more “flexible” way – using both quadrangles (e.g. 

rectangles) and triangles (Fig. 9). 

{} Ẑ
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Ŷ

Fig. 9. Example of the road surface model made of the triangles and the rectangles 

Then, some fragments of the road surface can be modelled by quadrangles, and if not, it can be 

done by triangles. In such a way, according to the authors, the road surface modelling can become 

more intuitive.
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4. Computer simulations 

In order to represent particular models of the road surface, there were four computer simulations 

ma

Tab. 1. The road surface model – the assumed parameters 

Parameter Description 

de. In each of them, the modelled vehicle moved over the surface of different shape. Models of 

the uneven road surface were made in the Blender environment, and then they were imported in the 

developed program. Each of the surface models were characterized by the parameters presented in 

Tab. 1. 

xmin, xmax, ymin, ymax, zmin, zmax [m]  d minimum values of point coordinates of the road Maximum an

surface model 

uWP rtexes in the discrete model or a number of control A number of ve

points in the continuous model 

uTO tangles in the discrete model or A number of triangles or rec

a number of grid cells in the continuous model 

The computer simulations were performed by the computer program, developed within the scope 

of

xample I 

 surface model made is presented in Fig. 10. It consists of two flat fragments neighbouring 

to t

the cited doctoral dissertation. The mathematical model of the vehicle used in the computer 

simulations is described in this work too. 

E

The road

he projecting “bump”. Since there are no surface slopes towards versor Ŷ  (of the system{}), 

the whole surface model was made by the rectangles.  

Fig. 10. Road surface model made in the Blender environment 
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The values of the parameters, as in Tab. 1 are: 2minx , 5.11maxx , 2miny , 2maxy

eveloped

,

 such a way was im  

pro

 of the vehicle “straight on” over the projecting bump was simulated; and it is shown in 

the

0 , 2.0maxz , 40WPu , 34TOu .minz

The surface model prepared in ported in the discrete form in the d

gram. 

A drive

 screen shots made during the animation (Fig. 11). 

Fig. 11. Examples of the screen shots made during the animation

xample II 

ample, as in the previous one, the road surface model was prepared, and then it was 

imp

E

In this ex

orted as the discrete model in the developed program. The surface model made is characterized 

by a changeable profile both towards versor X̂ , and Ŷ  (Fig. 12). 

The parameter values of the presented odel, as in Tab. 1m , are: 5.2minx , 7.12maxx ,

5.5n , 5.3maxy , 0minz , 47.0miy maxz , 207WPu , 434TOu  – e  

f s i a er of the vertexes.  

Examples of the screen shots made during the animation, presenting the track over wh

unlike in th  model used

in the first example, the number o quadrangle s greater th n the numb

ich the 

vehicle moved, are presented in Fig. 13. 

Fig. 12. Road surface model 

xample III 

her simulation, the model of the road surface, presented in Fig. 14, was 

ma

E

Within the scope of anot

de. This model was imported as the discrete model in the developed program.  

Values of the appropriate parameters of the assumed road surface model are: minx 2 , 51maxx ,

9n , 9maxy , 2minz , 0maxz , 633miy WPu , 1104TOu .

The screen shots presenting the track of the moving vehicle are presented in Fig. 15. 

448



Ways of Uneven Road Surface Modelling Used in the Vehicle Dynamics Analysis 

Fig. 13. Examples of the screen shots made during the animation 

{} Ẑ
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02 z

0z

Sub areas of

different shapes

Fig. 14. Road surface model 

Fig. 15. Examples of the screen shots made during the animation 

Example IV 

In the last example, the road surface model was prepared, and the model was imported as the 

continuous model in the developed program. The grid of the control points of this model is presented 

in Fig. 16. 

Values of the parameters of the presented surface model are following: , 2minx 49maxx ,

, , 8miny 8maxy 8.0minz , , 2.1maxz 128WPu , 165TOu .

Selected phases of the modelled vehicle drive are presented in Fig. 17. 
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Fig. 16 Control point grid of the continuous model of the road surface 

Fig. 17. Examples of the shot screens made during the animation. 

5. Conclusions 

The computer simulations presented in this article, are only a part of works performed by the 

authors. The presented models of the road surface enable to conduct a series of other computer 

simulations, which can include different types of the road surface unevenness. For example, in 

doctoral dissertation [5], a simulation of a drive of the vehicle over smooth and sharp unevenness 

was described, and the calculation results were compared with the results obtained in an experimental 

way – for this purpose there were experiments carried out using specialist measurement equipment. 

Additionally, in work [6] the authors determined the essential parameters of the vehicle, including 

an inclination angle of the road surface, at which a loss of its stability takes place. 

The main advantage of the discrete model of the road surface is a possibility to take its unevenness 

into account together with the neighbouring flat areas – this case was presented in example I. It is 

difficult to achieve in the continuous model – because the grid of the control points has to be 

compacted appropriately in the points where there are flat fragments. An additional advantage of 

the discrete model is a possibility to obtain fragments of the surface of different shapes (Fig. 14) – 

in the continuous model, due to the point grid structure, it is impossible. While analyzing advantages 

of the continuous model, it was found that courses of the results of the calculations, made by its 

use, had a “smoother” character (no “sharp oscillations”) than in the case of the discrete model. This 

effect can be obtained in the discrete model by compacting the division into polygons, although it 

extends the calculation time. 

In this article, the authors conducted also an analysis of the time of calculations made using the 

discrete model, compacting the division into polygons. For example, by increasing a number of the 

polygons four times in the first example presented, the obtained calculations times were only 2.5 
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longer than in the case of the non-compacted road surface model. Such a relationship of the 

calculation time with reference to the density of the division of the modelled road surface into the 

polygons confirms applicability of the NNS algorithm.  

Acknowledgements 

The investigation was supported by the National Science Centre in Cracow under doctoral 

research grant 0630/B/T02/2011/40. 

References 

[1] Dziubi ski, I., Siewierski, L., Mathematics for technical universities (in Polish), PWN, 

Warszawa 1989. 

[2] Friedman, J. H., Bentley, J. L., Finkel, R. A., An Algorithm for Finding Best Matches in 

Logarithmic Expected Time, ACM Transactions on Mathematical Software (TOMS), Vol. 3, 

pp. 209–226, New York 1977. 

[3] Keys, R., Cubic convolution interpolation for digital image processing, Acoustics, Speech 

and Signal Processing, Vol. 29, pp. 1153–1160, 1981. 

[4] Samet, H., The design and analysis of spatial data structures, Addison-Wesley Longman 

Publishing Co., Boston 1990. 

[5] Tengler, S., Analysis of dynamics of special vehicles with high gravity centre, PhD Thesis, 

Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 2012. 

[6] Tengler, S., Harlecki, A., Analysis of dynamics of special vehicles with high gravity centre – 

the case of stability loss, Int. J. of Applied Mechanics and Engineering, in print.  

451


