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Abstract 

The problem under consideration in the paper of automation transportation operation realized by material 
handling devices is focused on time and accuracy of an overhead travelling crane’s shifting process. The presented 
anti-sway crane control system was solved in the paper using combination of an indirect adaptive pole placement 
(IAPP) control method, fuzzy logic and artificial neural network. The presented approach to crane control is based on 
assuming structure of crane dynamic linear model with varying parameters, and linear closed-loop discrete control 
system consisting of proportional-derivative controllers with gains adjusted to changes of model’s parameters using 
pole placement method (PPM). The parameters of crane dynamic model are estimated on-line using recursive least 
squares (RLS) algorithm. The estimation process is speeded up by neuro-fuzzy estimator, created using Takagi-
Sugeno-Kang (TSK) fuzzy inference system, which determines the initial parameters of crane model based on 
scheduling variables, rope length and mass of a load changing in stochastic way. The neuro-fuzzy estimator is created 
in off-line process of neural network learning using least mean squares (LMS) method, based on a set of parametric 
output error models of crane dynamic identified for fixed values of rope length and mass of a load. The TSK estimator 
is next on-line improved by RLS algorithm.  
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1. Introduction 
 

The paper is addressed to a problem of material handling processes automation, with attention 
focused on transportation operations realized by the overhead travelling cranes, which belong to 
the class of material handling devices denoted as the Large-Dimensional Rail-Mounted Handling 
Devices (WSUT) [13, 14]. The problem under consideration of an anti-sway crane control system 
is popular in automatics and frequently discussed in scientific works in which the proposed 
solutions are based on both, conventional, as well as unconventional, so called intelligent, 
methods. However a problem of adaptive crane controlling is hardly ever addressed to applicable 
in industrial practice solutions, as well as verifying researches are seldom carried out on real 
objects. This fact is significant to meet rising demands for transportations operations time and 
precision, as well as for improving exploitation quality, safety and reliability of material handling 
devices, which important representative is an overhead travelling crane. Those requirements are 
the result of automation of manufacturing processes and can be met by automating and improving 
control quality of material handling systems and devices. 
In many manufacturing processes, where cranes realize the transportation operations, the safety 
and precise transfer of materials is required with minimizing the load oscillations and the operation 
time. In the non-automatic systems the resulting performance depends on the human operator 
experience and capability, which can be unreliable. 

The problem of positioning a payload shifted by a crane is considered in many of scientific 
works. The frequently presented approach to the problem under consideration is based on an open-
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loop control system solved using the optimal control theory [2, 3]. The closed-loop approach to 
a crane control system is frequently addressed to a problem of nonlinear crane system controlling 
based on known linear model of a crane dynamic with varying parameters corresponded to rope 
length and mass of a load variables. This approach allows applying methods based on Quadratic 
Regulator (LQR) [11], gain scheduling system [6], Lyapunov-equivalence-based observer [7], 
feedback linearization [4], pole assignment methods [8, 13].  

The unconventional methods used in crane control systems are mostly based on fuzzy logic, 
artificial neural network [1] or combination of both so called intelligent methods [9, 13]. Those 
examples are mainly based on Mamdani fuzzy implications [5, 12], however the fuzzy systems 
based on Takagi-Sugeno-Kang (TSK) model are also presented [10, 13]. 

In the paper the proposed and described crane control system was based on an indirect adaptive 
pole placement IAPP method with the TSK fuzzy estimator of crane dynamic model’s parameters. 
The control algorithm was created using recursive least squares (RLS) estimator of identified 
model of controlled object. The crane dynamic model was assumed as a linear system with varying 
parameters depended on the rope length and mass of load variables. The fuzzy estimator, which 
was achieved in off-line process of neural network learning is used to set an initial vector of 
parameters close to the expected for actual values of rope length and mass of a load, and speed up 
the estimation realized by RLS algorithm. Simultaneously the TSK fuzzy model of a crane dynamic 
is improved in real-time by the RLS algorithm. The control system was based on a time-discrete 
closed-loop control system with crane position and speed, as well as load swing angle feedbacks. 
The controllers gains are adjusted using pole placement method (PPM) based on the parameters of 
a crane dynamic model, estimated in each sample time. The results of experiments carried out 
using the laboratory overhead travelling crane, with hoisting capacity Q=150 [kg], localized in the 
Laboratory of Automated Transportation Systems and Devices at the AGH University of Science 
and Technology in Krakow, are presented as well. 
 
2. Identification of a crane dynamic model 
 

The assumed structure of a time-discrete crane dynamic model is shown in the Fig. 1. The 
model of controlled object consists of two sub-models which are expressed as the discrete transfer 
functions  and . In presented in the Fig. 1 model, the swing of a load influence on 
a crane speed was omitted for simplicity. Consequently the parametric model of the controlled 
object consists of two models that present relationship between the load swing  and crane 

velocity  (transfer function ), as well as relationship between crane speed  and input 

function u (transfer function ). The models can be identified separately based on data 

measured for the constant values of rope length l and mass of a load . 
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Fig. 1. The assumed parametric model of a crane dynamic consisting of two models expressed in a form of discrete 

transfer functions  and  )(zGx )(zG
 

The model, which expresses dynamic behaviour of a crane power transmission, can be 
simplified to a first-order system, denoted as the transfer function : )(zGx
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The model that expresses dynamic behaviour of oscillating object can be formulated as 
a second-order system, denoted as the transfer function : )(zG
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The presented models (1) and (2) can be identified off-line using output error (OE) method 
based on data measured during experiments carried out for fixed values of rope length, denoted as 
l, and mass of a load, denoted as  (the mass of a crane is denoted as ). In the proposed 
indirect adaptive pole placement crane control system the parameters of assumed models are 
determined using recursive least squares (RLS) algorithm that improves the identification’s 
performances in each step time. The estimators of both models are as follows: 
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 of the controlled object are calculated based on estimators 

of parameters  and  derived in previous step time: )1(ˆ tx 1t(ˆ
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The vectors )(tx  and )(t  are composed of delayed outputs and inputs of the assumed 

models: 
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The one-step prediction errors are determined based on the actual and estimated values of 
outputs (7, 8). On the basis of the vectors )(tx  and )(t  the auxiliary matrixes  and  

are determined according the expressions (9) and (10) respectively: 
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where: 
98,0  - assumed forgetting coefficient which determines speed of learning process. 

The Kalman’s vectors are determined basis of auxiliary matrixes  and , and delayed 

input and outputs of controlled object: 
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The actual estimators  and  are determined based on one-step prediction errors (7) 

and (8) according to equation (13) and (14): 
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The IAPP control system under consideration requires to start with non-adaptive controller 

gains or/and initial values of estimators  and  to excite the controlled object outputs 

and prompt the RLS algorithm to estimation. 
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3. The indirect adaptive pole placement crane control system 
 
3.1. The neuro-fuzzy estimator of crane model’s parameters 
 

The crane nonlinear model simplified to a linear model with varying parameters (1, 2) 
characterizes stochastic changes of parameters corresponded to changes of rope length and mass of 
a load variables, which can be used as scheduling variables to solve both problems, robust control, 
as well as modelling a crane system. Considering a given controlled object, e.g. an overhead 
travelling crane, the range of those parameters changes are usually known ( ][, maxmin mlll  and 

][, max2min22 kgmmm ) during control system designing. Simultaneously, the parameters of 

controlled object can change, in the extreme case, from minima to maximal, or vice versa, value, 
which can caused the deterioration of RLS algorithm and adaptive system performances. For this 
reason in the IAPP system was employed the fuzzy estimator which speeds up estimation by 

determining the initial values of estimators  and , based on the actual values of 

scheduling variables l and . 
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The TSK estimator of the OE models parameters (1, 2) is determined based on the models 

identified for chosen values of rope length nllll ...,,, 21  and mass of a load 

. In the result of crane dynamic models identification a set of vectors 

, are obtained for input vectors 
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 consisting of the 

scheduling variables of the TSK system. The variables  and  are fuzzy using the triangular 
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membership functions  and , that take value one (membership coefficient )(lLM )( 2mLM 1)(l , 

1)( 2m ) for rope length and mass of a load constant values assumed during identification of N 
models (Fig. 2). 
 

 
Fig. 2. The triangular membership functions defined for l and  input variables of TSK fuzzy estimator 2m

 

The set of determined OE models corresponds to the mnN  fuzzy implications in TSK 
knowledge base, where a single k-rule if-then is expressed as follows: 
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The final output vector Y of the TSK system is calculated as weighted average of all rules 
outputs: 
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The weight of a k fuzzy rule  is calculated as a product of membership coefficients for l and 

 input values to the triangular membership functions  and  shown in the 
Fig. 2: 

w
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The TSK fuzzy system can be presented in a form of neural network, that allow to used 
learning algorithm to set the parameters of fuzzy implications consequences based on training 
data. Data gathered from identification can be used to set the TSK system parameters in the 
process of neural network learning based on a training data matrix TD composed of input and 
output variables of fuzzy system, and using least mean squares algorithm to learn the 
consequences of fuzzy rules: 

, 
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 ].[TD 2 iy,ml,  (17) 

The TSK fuzzy estimator of the OE model parameters, obtained in off-line process of neural 
network learning is improved in real-time process by using recursive least squares algorithm. In 

each step time the RLS algorithm determines the estimators  and  for actual values of 

rope length l and mass of a load . The actual values of estimators  and  are changed 

in each k fuzzy implication of the TSK fuzzy system, if a weight of this implication is , 

according to the equation: 
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3.2. Pole placement approach to crane control 
 

The assumed structure of control algorithm used in the IAPP crane control system is based on 
the proportional controllers of crane position and speed (gains  and ) and discrete load 

swing controller  (19). The control system for assumed crane dynamic model (1, 2) is presented 

in the Fig. 3. 
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Fig. 3. The time-discrete crane position and speed, as well as the load swing control system 

 
The unknown gains of closed loop control systems for estimated parameters of controlled 

object’s model are derived based on Diophantine equation (20) formulated for the characteristic 
equation of considered closed loop control system transmittance, and expected characteristic 

equation, denoted as  (21) and determined for desired poles. In the expression (20) the 
Diophantine equation was formulated based on the A, B, C, D matrixes consisting of crane 
dynamic model parameters, and P vector of desired characteristic equation coefficients. 
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The  is the  order desired characteristic equation (21) of the closed loop control 
system (Fig. 3). 
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The coefficients  of the desired equation  are derived based on desired 

poles (22), which can be specified for pulsation 

Tppppp 01234 ,,,, )(zP

0  of closed loop control system and 

dimensionless dumping coefficient . 
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3.3. Indirect adaptive pole placement crane control system 
 

The IAPP crane control system with the TSK fuzzy estimator simplified algorithm is presented 
in the Fig. 4. 
 

 
Fig. 4. The indirect adaptive pole placement crane control system with the TSK fuzzy estimator of crane model parameters 

 
The control algorithm is based on the time-discrete closed loop control system (Fig. 3) 

which gains are adjusted by using pole placement method for estimated by RLS and TSK 
algorithms parameters (3) of assumed crane dynamic model (1, 2), and desired poles (22) 
determined for assumed dumping coefficient 1 (lack of oscillations and overshoots of 
output signals, crane position x  and the load swing angle ), and for pulsation of the load 
swing angle (23). 
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4. Experimental results 
 

The experiments were carried out using the laboratory object, the double-girder overhead 
travelling crane with hoisting capacity Q=150 [kg]. The control system with IAPP control 
algorithm was realized using the PC platform with I/O board (PCI-1710HG control-measurement 
card manufactured by Advantech firm).  

The control assumptions and aims were formulated as expected positioning accuracy for 
crane’s mechanism and shifted a payload, and acceptable tolerance of oscillations and overshoots 
of output signals equal 0.02 [m], as well as the setting time about 7 seconds. The examples of 
experimental results for chosen values of rope length l ={0.7; 1.7}[m] and mass of a load 

 ={10; 30; 50; 70}[kg], and expected position of crane and payload 2m ][1 mxd , are presented in 

the Fig. 5-8 in the form of time characteristics of crane position  and the load deviation 
assumed as a product of rope length and load swing angle 

]m[x
][ml . 

 

Fig. 5. The crane position for  

and m  

][7.0 ml

][kg70,50,30,102

Fig. 6. The load swing for  

and 

][7.0 ml

][70 kg,50,30,102m  

 

Fig. 7. The crane position for  

and m  

][7.1 ml

][kg70,50,30,102

Fig. 8. The load swing for  

and 

][7.1 ml

][70 kg,50,30,102m  
 

The results obtained using the IAPP control system (Fig. 4) with TSK fuzzy estimator are 
satisfied for the assumed control conditions. The oscillations of a payload are reduced about 
expected tolerance (0.02 [m]) just between 3-4 seconds, and next dumped in expected setting time, 
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about 7 seconds to the assumed acceptable tolerance 0.02 [m]. The results of experiments confirm 
effectiveness of the proposed adaptive control system. 

 
5. Final remarks 
 

The aim of researches, which results are presented in the paper, was to elaborate an automated 
transportation system realized by overhead travelling crane. The problem of automating, with 
ensuring expected time and precision of operations realized by overhead travelling crane, as well 
as improving exploitation quality of transportation device, was solved using indirect adaptive pole 
placement control algorithm. The stochastic varying parameters of considered system, which 
corresponds to rope length and mass of a payload changes in expected ranges, are estimated using 
combination of recursive least squares (RLS) algorithm and neuro-fuzzy system, that speeds up 
estimation process and improves control quality of the IAPP crane control system. The proposed 
solution was tested with satisfactory results on the laboratory object, and examples of 
performances were presented in the paper. 
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