ANALYSIS AND EVALUATION OF RISK IN A TRANSPORT SYSTEM

Maciej Woropay, Andrzej Wdzięczny

Machine Maintenance Department
Technical and Agricultural Academy in Bydgoszcz
ul. Kaliskiego 7, e-mail: andy@mail.atr.bydgoszcz.pl

Abstract

The dangers originating within the vehicle usage process, resulting from incorrect operation of their braking sub-systems have been evaluated in the paper.

The subject of the analysis is influence of the forcing factors on occurrence of the damages to the bus braking subsystems. The operation and maintenance factors affecting the technical object elements cause unfavourable changes of the values of their significant features, as far as the vehicle operation is concerned, causing the damages. Among the forcing factors it is possible to distinguish the ones resulting from improper action of a human and those resulting from reaction of the environment to the technical objects.

If the originated damages are not interconnected to one another by a cause and effect link, what means that they are independent and occur randomly, such damages are specified as primary ones herein. However, if the damages are dependable and they originate due to human faults in the process of repairing the primary damage or due to driver’s faults within the vehicle usage process then they are secondary ones.

The vehicle damages at the operation and maintenance stage may occur due to human’s faults:
- within the service process (diagnostic faults, parts dismantling and assembling faults, using wrong spare parts – e.g. non original ones, using substitutive repair means),
- within the usage process (operator-driver’s faults, passengers’ faults),
- within other processes (reactions coming from the environment of the technical object).

The studies have covered a randomly chosen sample of the technical objects being operated and maintained within a real urban bus transportation system.

Keywords: transport system, safety, reliability, maintenance, failures

1. Introduction

It was attempted herein to evaluate the dangers originated in the process of using vehicles, resulting from their operation in a state of limited serviceability. Based on the analysis of the relevant literature and the results obtained from our own studies it was found that the dangers created by the vehicles being used within transport systems are effects of an interaction of various forcing factors. There factors may be divided into:

a) working (within the system) – forcing factors affecting vehicle as a result of carrying out useful functions (which depend on the vehicle operations), such as:
 - torque,
 - moments of inertia,
 - compression and working pressure,
 - heat emitted due to mating of components,
 - friction,
 - etc.

b) external – forcing factors characterising influence of the environment on a vehicle (they do not depend on the vehicle operation):
 - improper behaviour of co-users of the roads,
 - inappropriate road infrastructure,
 - inappropriate road surface condition,
 - unfavourable atmospheric conditions,
- etc.

c) human engineering – forcing factors affecting the vehicle due to human actions such as operator’s faults:
- driver’s ones
 - improper steering of a vehicle,
 - driving speed not adjusted to the road conditions,
 - wrong estimation of the situation.
- serviceman’s ones
 - wrong diagnosis (pre- and after-repair),
 - wrong execution of the repairs and technical services.

An exemplary arrangement of the reasons for the damages caused to the automotive vehicles is presented in the Fig. 1 [10].

![Fig. 1. Frequency of the occurred reasons for the components damages](image_url)

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.7%</td>
</tr>
<tr>
<td>2</td>
<td>25.3%</td>
</tr>
<tr>
<td>3</td>
<td>18.5%</td>
</tr>
<tr>
<td>4</td>
<td>11.5%</td>
</tr>
<tr>
<td>5</td>
<td>20%</td>
</tr>
</tbody>
</table>

1. Repair faults,
2. Usage faults,
3. Influence of the environment,
4. Damage of mating components,
5. Others.

The damages to the vehicle subsystems occurred during the usage process within the transport systems lead to dangerous events causing threats. A damage at work is defined as exceeding admissible limiting values by significant features describing the elements. When carrying out a task in a state of limited serviceability resulted from exceeding the limiting values of the significant elements features, a vehicle may undergo a failure or a road accident, followed by threats to: the human health and life, the vehicle and the environment. A threat, is to be interpreted as a conditional possibility of generating losses due to occurrence of a single undesirable event [3, 7]. However, the undesirable event (dangerous one) is described as such an event which may cause a damage [3].

Whereas, a damage according to [3, 7] is defined as a physical injury to health, impairment of a property or degradation of the environment.

The threat degree is evaluated basing on the evaluation of the risk level value.

The risk is a combination of occurrence of an undesirable event and the effects measured by the extent of the losses caused by it.
One of the most significant risk measures is probability of occurring losses in the assumed time interval of the system functioning (H-TO-E) (Human-Technical Object-Environment) under investigation.

The risk measures, described in the relevant literature, are generally used to describe its levels, assuming that the losses occur suddenly within short time intervals and it happens for various random reasons.

Having analysed the results of the operation and maintenance investigations related to the moments of the damage occurrence it was found that the damage set may be divided into primary and secondary damages.

It results from the fact that the occurrence moments of the same components damages are concentrated sequentially after the occurrence of a single damage to a component.

As it can be seen in the Fig. 1 the first of the damages, occurred in the moments \(t_i \), cause the sequence of further damages to the same component in short intervals. These damages were called primary ones. Whereas, the further damages, with a finite number of repetitions, occurring in the moments \(t_{ij} \), were called secondary ones.

Fig. 1. The time intervals between the primary and secondary damages.

\(t_i \) – moments of the primary damages occurrence,
\(t_{ij} \) – moments of the secondary damages occurrence,
\(T_i \) – time intervals between the moments of the primary damages occurrence,
\(T_{ij} \) – time intervals between the moments of the secondary damages occurrence.

The primary damages do not depend on one another and they happen randomly (they are not interrelated by cause and effect links). The secondary damages are dependable, because their occurrence depends on a previous occurrence of a primary damage and on the outcome of its improper repair or an improper repair of the next secondary damage.

As it results from the above statement, the occurrence of an event being a secondary damage is conditioned by the occurrence of a primary damage. This may be formulated as follows:

\[
P(A_t|B_{tij}) > P(B_{tij})
\]

where: \(t_{ij} < t_i \),
\(t_i \in [0, t] \)
\(P(B_{tij}) \geq 0 \)

This means that the probability of the occurrence of a secondary damage \(A_{tij} \) conditioned by the occurrence of a primary damage \(B_{tij} \) is greater than the probability of the occurrence of a primary damage \(B_{tij} \).

The secondary damages at the operation and maintenance stage may happen:
- within the service process (faulty dismantling and assembling the components, using wrong spare parts – e.g. non original ones, using substitutive repair means, lack of ensuring adequate quality level of the service and repair activities, improper diagnostic operations etc.).
M. Woropay, A. Wdzięczny

- within the usage process (operator-driver’s faults, inappropriate behaviour of the passengers or people who are nearby the vehicle e.g. those at a bus stop, those who run across the road),
- due to the environment affecting a technical object.

The secondary damages form a significant value in the total number of the damages.

The Table 1 shows percentage of the selected vehicle subsystems, the damages of which were reason for road accidents. As it may be noticed, the Table 1 proves that the greatest number of the damages is related to the braking subsystem.

Table 1. Percentage of the number of the damages to the selected vehicle subsystems in the total number of the damages, causing road accidents in Poland between 2002 and 2004 [8]

<table>
<thead>
<tr>
<th>Name of the damaged subsystem</th>
<th>Percentage of damages per years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 2002</td>
</tr>
<tr>
<td>braking</td>
<td>18%</td>
</tr>
<tr>
<td>suspension</td>
<td>14%</td>
</tr>
<tr>
<td>driving</td>
<td>23%</td>
</tr>
<tr>
<td>steering</td>
<td>18%</td>
</tr>
</tbody>
</table>

As it can be seen the braking subsystem plays an important role in a vehicle, because its correct working is significantly decisive for the vehicle active safety. For that reason this subsystem was called significant one from the point of view of the vehicle operation safety and it was taken as an object for further investigations.

2. PURPOSE

The purpose of this paper is to evaluate the influence of the damages to the braking subsystems of the vehicles being operated and maintained within a transport system on the risk level value being borne when using a vehicle.

3. INVESTIGATION OBJECT

The investigation object are damages to the braking subsystems of the buses being operated and maintained within an urban transport system. While the investigation subject is the influence of these subsystem damages on the risk level value.

4. INVESTIGATION METHODOLOGY

The operation and maintenance investigations refer to the elements of the bus braking subsystems and to the moments they occur. Respective busses to be investigated were selected randomly. The operation and maintenance investigations were performed by means of the passive experiment method in real operation and maintenance conditions.

28 buses, 7 of each type, were selected for the investigation purposes. The investigation results cover a year-long operation and maintenance period.

5. RISK LEVEL EVALUATION METHODOLOGY

As a result of the analysis of the selected methods of risk evaluation (FMEA, ET/OU, FMECA) of a danger occurrence when operating and maintaining the means of an urban trans-
port system, FMEA method, due to its easiness to apply with unanimous possibility of precise representation, was chosen for the investigation aims.

The FMEA method is to determine probability of the occurrence of damages and failures and of the effects related to their occurrence referred to the system (H-TO-E) or its subsystems under investigation.

This method is to set the risk level of occurrence of dangerous events (R) depending on the probability of occurrence of a damage or failure of a subsystem of the technical object (P), evaluation of the index of the operator’s faults effects (Z) and the index of a damage detectability (W).

A method related to the probability of detection of a damage to the technical object subsystem was used herein.

Depending on the real need the risk level evaluation with FMEA method is carried out in more or less detailed way. It is done through setting the risk value R [10], according to the following dependence (1):

\[R = P \cdot W \cdot Z \]

where:
- \(R \) – index of risk evaluation,
- \(P \) - index of probability of a damage occurrence,
- \(W \) - index of a damage detection,
- \(Z \) - index of the effects of the damages to the vehicle subsystem (component) or of an operator’s faults outcomes,

In the risk level evaluation method, as per FMEA, little changes to the values of the indices of probability of a damage occurrence, detection of a damage by a driver and effects of a damage to the subsystem (component) generate significant changes to the risk value R, described with the dependency (1). The risk level may also take significant values in such a case when the value of one of the elements of the product \(P \cdot W \cdot Z \) is high. Therefore, when evaluating the risk value, the values of all the indices (dependence 1) are to be analysed. That is why it is needed to evaluate the influence of the damages to the subsystem components on its correct operation and to determine the effects of these damages.

In order to calculate the value of the risk index R, the values of the indices P, W, Z are to be standardized within the range \(1 \div 10 \).

Further actions depend on the risk level value R [7]. High value of the risk level R should be the basis for taking actions aimed at minimizing the occurrence of a damage [7]. A proposal of exemplary values of the indices P, W, Z, used to determine the risk value are entered in the Table 2.

<table>
<thead>
<tr>
<th>Failure occurrence probability – failure may take place (occurrence)</th>
<th>Detectability index – fault may be detected (occurrence)</th>
<th>Failure effects index - interaction (significance)</th>
</tr>
</thead>
</table>

Table 2. Exemplary values of the P, W, Z indexes applied to evaluate the risk [7]
Following the analysis of the literature and our own investigations, the Table 3 shows proposed values of the indices applied herein to evaluate the risk, basing on which appropriate values are adopted. The assigned values depend on the technical object condition, operator’s knowledge and efficiency of the damage detection.

Table 3. Assumed correlation between the number of the assigned points and the event occurrence probability value

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Event occurrence probability</th>
<th>Probability value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very slight</td>
<td>0,001÷0,0099</td>
</tr>
<tr>
<td>2-3</td>
<td>Slight</td>
<td>0,01÷0,099</td>
</tr>
<tr>
<td>4-5</td>
<td>Moderate</td>
<td>0,1÷0,199</td>
</tr>
<tr>
<td>6-7</td>
<td>Frequent</td>
<td>0,2÷0,29</td>
</tr>
<tr>
<td>8-9</td>
<td>High</td>
<td>0,3÷0,35</td>
</tr>
<tr>
<td>10</td>
<td>Very high</td>
<td>> 0,35</td>
</tr>
</tbody>
</table>

L_u index representing the numbers of the damages per each 100 000 kilometres was also applied in the paper to let us take into consideration percentage of the secondary damage in the total number of the damages.

$$L_u = \left(\frac{L}{P} \right) \cdot 100 000 \text{ km} \quad (3)$$

where:

L – number of the damages to the braking subsystem,
P – number of the kilometres travelled by a vehicle.

6. INVESTIGATION RESULTS

Twin pipe, twin circuit pneumatic braking systems are applied in the buses taken for the investigations. Some damages occur to the components of the braking subsystems thus causing dangers to the system operation (H-TO-E) (Table 4).

Table 4. Significant effects of the damages to the braking subsystem in the buses of the following makes: MAN NL223, JELCZ JM181M/1 and VOLVO B10BL

<table>
<thead>
<tr>
<th>Description of the effects caused by damages to a component in a subsystem</th>
<th>Description of a damaged component</th>
</tr>
</thead>
</table>
Sudden drop in pressure in the pneumatic system of the braking subsystem
- pneumatic system pipe,
- relay valve (APH),
- compressor,

Too high or too low pressure value in the pneumatic system
- pressure regulator,

Excessive pressure jump values in the pneumatic system
- pressure regulator,

Blocking wheels when brake partially applied in an unloaded vehicle
- ABS,
- pressure regulator,

Blocking wheels due to blocked servo mechanisms
- relay valve (APH),

Too high or too low braking force value on the respective wheels
- main brake valve - circuit I or II,
- pressure regulator,
- corrective valve,
- relay valve (APH),
- pneumatic system,
- four-circuit safety valve
- disc or drum assemblies to transfer braking force to the vehicle wheels,

Too intense braking of a wheel of the front or rear vehicle axle
- valve accelerating vehicle brake release,
- pressure regulator,
- main brake valve,

Problems to unblock the wheels of the front or rear axle after releasing the brake pedal
- valve accelerating brake release,

Delayed braking moments of the rear axle wheels in relation to the front axle wheels
- main brake valve,
- valve to control braking force,
- relay valve (APH),

No braking force on the wheels when vehicle brake is applied
- diaphragm-spring servo mechanism,
- expander,
- valve to control braking force,
- relay valve (APH).

On the basis of the results obtained from the operation and maintenance investigations, the numbers of the primary and secondary damages to the bus braking subsystems were determined and the values of R and Lu were calculated.

The selected investigation results and calculations are presented in the Table 5.

<table>
<thead>
<tr>
<th>Bus number</th>
<th>Code of the damaged component</th>
<th>Number of the primary damages</th>
<th>Number of the secondary damages</th>
<th>Value of the indices for the real number of the secondary damages</th>
<th>Value of the indices for 75% of the number of the secondary damages</th>
<th>Value of the indices for 50% of the number of the secondary damages</th>
<th>Value of the indices for 0% of the number of the secondary damages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>9</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>3</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>1</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 5. Values of the risk indices (R) and of the index (Lu) for the selected buses braking subsystems cont.
<table>
<thead>
<tr>
<th>Bus number</th>
<th>Code of the damaged component</th>
<th>Number of the primary damages</th>
<th>Number of the secondary damages</th>
<th>Value of the indices for the real number of the secondary damages</th>
<th>Value of the indices for 75% of the number of the secondary damages</th>
<th>Value of the indices for 50% of the number of the secondary damages</th>
<th>Value of the indices for 0% of the number of the secondary damages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>Lu</td>
<td>R</td>
<td>Lu</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>3.48723</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

M. Woropay, A. Wdżęczny
On the basis of data included in the Table 5 significant components of the braking subsystem from the point of view of the operation risk were determined.

Table 6. List of the significant components of the braking subsystem.

<table>
<thead>
<tr>
<th>Code of the damaged component</th>
<th>Name of the damaged component</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>pneumatic system</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>working components (discs – pads, drum – brake shoe)</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>other components</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>servo mechanism</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>main brake valve</td>
<td>5</td>
</tr>
</tbody>
</table>

7. INVESTIGATION RESULTS ANALYSIS AND CONCLUSIONS

From the data presented in the Table 5 it results that the most significant influence on the risk level value in the braking system have the damages to such subsystems as: pneumatic system of controlling brake shoe spreader and working elements (discs – pads, drum – brake shoes). The risk level reaches the highest values in case of the vehicles of Jelcz M11 type.

Based on the investigation results shown in the Table 5 (1B, 3B, 4B, 6B, 7B) it may be concluded that the number of the secondary damages occurred is significant. The highest percentage of the secondary damages in total number of the damages is characteristic for the buses of Jelcz M11 make.

It is worth mentioning that when reducing the number of the secondary damages to the subsystems components the risk level value is reduced as well. Even little changes to the number of the secondary damages lead to reduction of its value. By reducing the number of the secondary damages by 50% we reduce the risk level value even by 1/3. Whereas, elimination of the secondary damage in case of the pneumatic system of the bus No. 2 would allow us to obtain significant reduction of the risk level value, even by as many as 50%.

From analysing the source data it results that the secondary damages to the components of the bus braking subsystem should be eliminated especially within the service and repair process. It may be achieved by:
- correct diagnostic process,
- applying adequate spare parts,
- applying adequate repair means,
- observing scheduled times for surveys and replacements,
- correct assembling and disassembling.

Carrying out the investigation for longer period would allow us to determine the significant components of the subsystem. When performing the research, attention should be paid to these danger effects which negatively affect human organism. It is quite an important issue, because these effects may subsequently lead to new dangers.

References

