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Abstract 

Reduction of transient and residual payload swing in crane systems is a key control objective to guarantee the 
safety and efficiency requirements. The fast and accurate payload positioning with swing suppression within the 
acceptable range to avoid accidents is the challenging problem due to the underactuated nature of crane systems. 
Since the actuated motion causes undesirable payload swing, the efficient control method should be developed to 
ensure fast and precise payload positioning and meet the safety requirements. The standard model predictive control 
method is not suitable for underactuated mechanical systems. In this article the two, soft and hard-constrained anti-
sway predictive control strategies are compared in experiments carried out on a laboratory scaled overhead 
travelling crane. The both control schemes are developed based on the linear parameter-varying model of a planar 
crane system. The recursive least square algorithm with parameter projection is used to estimate the model 
parameters. The soft-constrained optimization problem is solved using the particle swarm optimization algorithm with 
the inertia weight linearly decreasing during iteration. The metaheuristic optimizer is applied to determine the 
sequence of optimal control increments subject to the hard constraint of the control input and soft constraint of the 
payload swing. The comparison of hard and soft-constrained predictive controllers is carried out on a laboratory 
stand for different payload deflection constraints. 
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1. Introduction  

 
The safety and efficiency for cranes operations require solving different types of constructional 

and technological problems, as well as problems related to automation of crane operations [5-7, 
11, 17, 18]. Cranes, which are used in material handling systems of many industrial sectors, are the 
examples of underactuated mechanical systems due to the fact that the position of a rope 
suspended payload is indirectly controlled through controlling the actuated mechanisms of a crane. 
Since the actuated motion causes undesirable payload swing, the efficient control method should 
be developed to ensure fast and precise payload positioning and meet the safety requirements. 
These involve reduction of transient and residual payload swing within the acceptable range. 

The problem under consideration is attractive for researchers, and either open loop or 
feedback-based control solutions are reported in many previous papers. A thorough review of 
various methods reported in the literature for crane modelling and control is presented in [1, 13]. 
The most of these control techniques focuses on suppressing the residual vibration, while the 
transient oscillations are frequently neglected. The model predictive control (MPC) has been 
recently applied in different crane control applications, such as hydraulic forestry crane [8], boom 
crane [2], gantry crane [16] and overhead crane [9]. The predictive control approaches reported in 
the literature show effectiveness in suppressing the residual vibration; however, they consider 
mainly the constraints of input signal, acceleration and velocity of a crane without limiting the 
transient payload deflection. The hard-constrained MPC solutions for payload swing limitation are 
presented in [3, 14]. The GPC-based approach with the particle swarm optimization (PSO) 
algorithm is developed in [15] for the soft constraint of payload swing. 
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In this article, the hard and soft-constrained predictive approaches developed in [14, 15] are 
compared in experiments carried out on a laboratory scaled overhead travelling crane. In both 
cases, the predictive control scheme is developed using the generalized predictive control (GPC) 
procedure based on the discrete-time linear parameter varying (LPV) model of a crane dynamic. 
The parameters of a model are on-line estimated using the recursive least square (RLS) algorithm 
with parameter projection. In the second approach, the PSO algorithm is applied to determine the 
sequence of optimal control increments over the control horizon subject to hard constraint of the 
control input and soft constraint of the payload swing. The GPC-PSO controller is successfully 
verified during the experiments carried out on a laboratory stand and compared with the hard-
constrained predictive control strategy developed in [14]. 

The rest of the article is organized as follows. Section two presents the LPV model of an 
overhead crane taken into consideration. The predictive controller with the PSO algorithm is 
presented in section three. Section four exhibits and discusses the results of experiments. The work 
is summarized in section five. 
 
2. LPV model of an overhead crane 

 

A 2-D crane system is considered as a spherical pendulum moved by a cart (Fig. 1). A payload 
is a point-mass suspended at the end of a massless rigid cable. Neglecting the influence of the 
pendulum motion on the cart motion, the dynamic of the actuated cart and the unactuated 
pendulum is simplified to the first-order (1) and second-order (2) discrete-time LPV models, 
respectively. 

 

 
Fig. 1. Planar model of a crane, where x, vx, m, l, u and α are position and velocity of a cart, mass of a payload, rope 

length, controlling signal corresponding to control force acting on a crane, and sway angle of a payload, 
respectively 
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where A(z-1) = 1 + a1z-1, B(z-1) = b0, C(z-1) = 1 + c1z-1 + c2 z-2, and D(z-1) = d0 + d1z-1 are the 
polynomials in the backward shift operator z-1. 

Since the parameters of models (1) and (2) vary with operating conditions, the RLS algorithm 
is applied for online estimation according to: 
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where: 
[ ]T
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)1(ˆ)( 111 −−= ttve x θϕ , 

)1(ˆ)( 222 −−= tte θϕα  

and ]1,0(∈µ  is the forgetting factor. 
The parameter projection can be used to ensure that the parameter estimates converge to 

feasible and stable solutions. In practice, the parameters are bounded within the range of operating 
conditions, which can be specified by the lower and upper limits of the rope length, mass of a hook 
assembly and a rated load. Thus, for the a priori known bounds min,îθ , and max,îθ  the parameter 
estimates should satisfy  

 msxiii t ,min,
ˆ)(ˆˆ θθθ ≤≤ , i = 1, 2. (5) 

 
3. Predictive controller with PSO algorithm 
 
3.1. Unconstrained predictive controller 

 
To determine the sequence of the optimal control increments over the control horizon Nu, the 

objective function is formulated as: 
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where xr is the reference signal, λ1 and λ2 are the weighting coefficients, Np is the prediction 
horizon. 

Substituting output variables x1 = x and x2 = α, the relations (1) and (2) can be rewritten to the 
CARIMA (Controlled Auto-Regressive and Integrated Moving-Average) models: 

 ∆+−= −− /)()1()()()( 11 ttuzBtxzA iiii ξ , i = 1, 2, (7) 

where A1(z-1) = ∆A(z-1), A2(z-1) = A(z-1)C (z-1), B1(z-1) = TsB(z-1), B2(z-1) = B(z-1)D(z-1) are the 
polynomials in the backward shift operator related to (1) and (2), x1(t) = Tsvx(t)/∆, ∆ = 1 - z-1, Ts is 
a sample time, ξ1 and ξ2 are the uncorrelated random sequences. 

According to [4], the j-step ahead predictors are derived from: 

 )()()1()()(ˆ 1
,

1
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where G1(z-1), G2(z-1), F1(z-1) and F2(z-1) are the polynomials recalculated through recursion of the 
Diophantine equations [4].  

The cost function to be minimized can be rewritten as 
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3.2. PSO algorithm 

 
To find the optimal sequence of control increments over the control horizon the cost function 

(9) should be minimized subject to constraints of control input and payload swing. PSO [10] is 
utilized to solve this problem, since the effectiveness of this concept has been proven in recent 
works [12, 19] reporting on the PSO-based MPC. The PSO optimizer is computationally efficient 
and easy to implement and hybridize with other heuristic algorithms in order to ensure efficient 
balancing between the global and local search. 

The future control increments represents coordinates of ith particle's position. At each kth 
iteration, the particle changes position searching the appropriate solution in the Nu-dimensional 
search space. The velocity and position coordinates, denoted jiv ,  and jiu ,

~ , respectively, are 
updated based on the previous best solution of the particle (personal best solution) and the global 
best solution in the population denoted p

jiu ,
~  and g

ju~ , respectively. The coordinates of particles 
velocity and position are updated as follows: 
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where k = 1, 2, ..., m, w is called inertia weight linearly decreasing from 0.9 to 0.4 during iteration, 
c1 and c2 are positive constants called acceleration coefficients, and r1 and r2 are the scalars 
randomly chosen between 0 and 1. 

Each individual is evaluated based on the objective function (9) taking into account the soft 
constraint of the payload swing: 
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where p > 1 is the penalty factor applied when predicted payload deviation exceeds an allowed 
value. 

 
4. Results of experiments 

 
The predictive control technique with the PSO-based optimizer was tested on a laboratory 

scaled overhead crane equipped with DC motors, and incremental encoders used for sensing the 
position of crane and sway angle of a payload. The measurement and control system was based on 
a PC (2 GB RAM, CPU Intel Core2 Quad Q6600 2.4 GHz) with the PCI-1710HG multi I/O board 
installed. The control algorithm was implemented using the C-MEX S-function incorporated into 
the MATLAB/Simulink (Version 7.0) running on Windows XP. 
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The objective of the control was positioning the crane to xr = 1 m and reducing the payload 
deflection within the tolerance ± 0.02 m, where the payload deflection was approximated as 
a product of rope length and sway angle of a payload (lα). The GPC-PSO strategy with the RLS 
estimation was tested for sample time Ts = 0.1 s, forgetting factor µ = 0.99, and for the control 
input signal range 10)(10 ≤≤− tu  V. The parameters of the control scheme were empirically 
chosen as Np = 30, Nu = 8, λ1 = 3.7, λ2 = 0.008, c1 = c2 = 1.5, swarm size n = 30, and maximum 
number of iterations m = 100. 

Figures from 2 to 4 present the results of experiments carried out for the rope length l = 2.2 m 
and mass of a payload m = 10 kg, and for different constraints of the payload deviation selected as 
lαmax = {+/- 0.08, +/- 0.07, +/- 0.06} m. The error of crane position and residual vibration are 
within the tolerance +/- 0.02 m after the settling time 5.4 s, 5.9 s and 6.3 s for the payload 
deflection limits +/- 0.08 m, +/- 0.07 m and +/- 0.06 m, respectively. The maximum value of 
payload deflection is 0.0755 m, 0.0697 m and 0.0545 m for constraints of +/- 0.08 m, +/- 0.07 m 
and +/- 0.06 m, respectively. So, the safety requirement is satisfied for different payload deviation 
constraints. Those results are compared with the GPC-KT strategy developed in [14] where the 
Kuhn-Tucker complementarily conditions have been applied in the GPC-based procedure to solve 
an optimal control problem for the two-step ahead prediction of sway angle of a payload. The 
GPC-KT strategy satisfies the control objectives and constraints of the payload deflections, 
however, results in worse settling time compared to the GPC-PSO: 6.7 s, 7.3 s and 7.8 s for the 
payload deviation constraints +/- 0.08 m, +/- 0.07 m and +/- 0.06 m, respectively. For the same 
constraints the pendulum oscillations are reduced more smoothly using the GPC-PSO strategy 
with prediction horizon Np = 30. 

 

 

 
Fig. 2. Comparison of GPC-PSO and GPC-KT – experiment for l =2.2 m, m = 10 kg, payload deflection constraint  

+/- 0.08 m 
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Fig. 3. Comparison of GPC-PSO and GPC-KT - experiment for l =2.2 m, m = 10 kg, payload deflection constraint  

+/- 0.07 m 
 

 

 
Fig. 4. Comparison of GPC-PSO and GPC-KT - experiment for l =2.2 m, m = 10 kg, payload deflection constraint  

+/- 0.06 m 
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5. Conclusions 
 
The hard-constrained and soft-constrained predictive approaches developed are compared in 

experiments carried out on a laboratory scaled overhead travelling crane. The predictive control 
schemes are developed using the GPC procedure based on the discrete-time LPV model of a crane 
dynamic. The parameters estimations are performed using the RLS algorithm with parameter 
projection. The PSO algorithm is applied to determine the sequence of optimal control increments 
over the control horizon subject to hard constraint of the control input and soft constraint of the 
payload swing. The experimental results proved the effectiveness of the proposed predictive 
control strategy in terms of limiting the payload deflection in transient state and reducing the 
residual payload oscillation. 
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