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Abstract 

The predictive control scheme is developed for an overhead crane using the generalized predictive procedure 
applied for the discrete time linear parameter-varying model of a crane dynamic. The robust control technique is 
developed with respect to the constraints of sway angle of a payload and control input signal. The two predictive 
strategies are presented and compared experimentally. In the first predictive control scheme, the online estimation of 
the parameters of a crane dynamic model is performed using the recursive least square algorithm. The second 
approach is a sensorless anti-sway control strategy. The sway angle feedback signal is estimated by a linear 
parameter-varying model of an unactuated pendulum system with the parameters interpolated using a quasi-linear 
fuzzy model designed through utilizing the P1-TS fuzzy theory. The fuzzy interpolator is applied to approximate the 
parameters of a crane discrete-time dynamic model within the range of scheduling variables changes: the rope length 
and mass of a payload. The experiments carried out on a laboratory scaled overhead crane confirmed effectiveness 
and feasibility of the proposed solutions. The implementation of control systems was performed using the PAC system 
with RX3i controller. The series of experiments carried out for different operating points proved robustness of the 
control approaches presented in the article. 
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1. Introduction

Cranes are commonly used in many industries for transporting heavy and high-volume loads. 
There are different types of cranes, such as overhead, gantry, tower and boom cranes, which are 
widely used in factories, shipyards, warehouses and in construction of buildings. The under 
actuated nature of crane systems causes undesirable oscillation of an unactuated payload 
suspended on a flexible rope manipulated by the crane’s drives. The oscillation of a payload 
adversely affects the accuracy of performed transportation tasks and may present a safety hazard to 
employees, transferred payload and surrounding objects. The trade-off between safety and 
efficiency of crane’s operations is the challenging problem, which have been studied in numerous 
research works. 

A thorough review of various methods reported in the literature for crane modelling and 
control is presented in [1]. A comprehensive review of crane control strategies developed during 
the years from 2000 to 2016 is discussed in [15]. Different modelling, control and measurement 
approaches developed for crane systems have been recently reported in the literature [5-9, 18, 19]. 
Crane control strategies can be broadly categorized into optimal control, input shaping and 
feedback control. Many solutions are developed using an input-shaping method, which may 
demonstrate the robustness in the presence of varying natural frequency of an oscillatory system 
[20]. Feedback control methods are adapted to ensure the robustness to external disturbances and 
model uncertainty in feedforward or optimal control strategies [21], and developed using gain-
scheduling [22], or fuzzy logic technique [14, 16]. 

The article presents the model predictive controller developed using the generalized predictive 
control (GPC) procedure introduced by Clarke [4]. The idea of model predictive control (MPC), 
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which enables to optimize prediction of process behaviour with respect to constraints of process 
variables, has been recently applied in different crane control approaches. The MPC-based control 
scheme is developed for hydraulic forestry crane [10], boom crane [2], and laboratory models of 
a gantry crane [17] and overhead crane [11]. 

In this article, the GPC procedure is adapted to develop the robust predictive controller based 
on a linear parameter varying (LPV) model of a crane system. The two methods are used to 
estimate the parameters of a crane model. The first approach is based on the recursive least square 
(RLS) estimation that requires measuring the sway angle of a payload. In the second approach, the 
sway angle feedback signal is estimated by a discrete time model, and the parameters of a crane’s 
model are estimated by a fuzzy interpolator. The P1-TS theory proposed in [12, 13] is applied to 
approximate the parameters of a crane discrete-time dynamic model within the range of rope 
length and mass of a payload changes. The robust predictive controller is developed with respect 
to the sway angle of a payload and control input signal constraints. The experiments carried out on 
a laboratory scaled overhead crane confirmed effectiveness and feasibility of the proposed 
solutions. The implementation of control systems was performed using the PAC system with RX3i 
controller. 

The rest of the article is organized as follows. Section two introduces the planar model of 
a crane and the methods applied to estimate the parameters. The predictive controller is presented 
in section three, while the results of experiments are discussed in section four. Section five delivers 
the final conclusions. 
 
2. Crane dynamic modelling 
 

Consider a planar model of a crane transferring a payload (Fig. 1), which is assumed to be 
a point-mass suspended at the end of a massless rigid cable. The influence of the pendulum motion 
on the cart motion is neglected due to the assumption of large mechanical impedance in the drive 
system. Under these assumptions, the system is modelled as a cascade of the actuated cart (1) and 
the unactuated pendulum (2) formulated as the first-order and second-order discrete-time linear 
parameter varying models, respectively.  
 

 
Fig. 1. Planar model of a crane, where m, l, u and α are, respectively, mass of a payload, rope length, controlling 

signal corresponding to control force acting on a crane, and sway angle of a payload 
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The two methods are proposed to estimate the model’s parameters. The first method is based 
on the RLS algorithm that involves measuring the sway angle of a payload. The second method is 
based on a fuzzy interpolation that requires measuring the scheduling variables, such as rope 
length and mass of a payload, which correlate with the operating conditions of a crane system.  
 
2.1. Recursive least square estimation 
 

The models (1) and (2) can be equivalently presented as 

 )(ˆ)(ˆ 11 ttv T
x θϕ= , (3) 

 )(ˆ)(ˆ 22 tt Tθϕα = , (4) 

where the observation and parameter vectors are as follows 
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and ]1,0(∈µ  is the forgetting factor. 
The crane dynamic model is identified on-line using the RLS algorithm based on the current 

and past measurements. Thus, the plant parameters such as rope length and mass of a payload are 
not necessary to be measured. However, the sway angle of a payload is required to be measured, 
that is the drawback of this approach (the additional cost of the sensing equipment, which should 
be installed in a crane system). 
 
2.2. P1-TS fuzzy estimation 
 

The fuzzy interpolation is proposed as the alternative method of parameters estimation, which 
does not require sensing the sway angle signal, but requires measuring the scheduling variables, 
such as rope length and mass of a payload, which correspond to the operating conditions. 
Assuming, that operating conditions vary within the known range of scheduling variables, the 
parameters of a crane dynamic model can be interpolated by a quasi-linear fuzzy model. Hence, 
a crane dynamic is approximated through interpolation between a set of local linear models 
determined through identification experiments at the local operating points selected within the 
bounded intervals of scheduling variables [ , ]i i iw w w− +∈  (where i = 1, 2, and w1 = l, w2 = m). 
Applying the P1-TS fuzzy theory proposed in [12, 13], a fuzzy quasi-linear interpolator can be 
developed by dividing an each interval [ , ]i iw w− +  into ni subintervals [βi,j, βi,j+1] (where βi,j < βi,j+1, 
and j = 1, 2, ..., ni), that leads to obtain 1 2n n⋅  fuzzy interpolation regions. For each interval, the 
linear membership functions are defined as follows: 
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The estimates of parameters are interpolated according to the formula: 

 [ ] k
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where g and Ω are called generator vector and fundamental matrix [12], respectively, which can be 
determined recursively, for i = 1, 2 according to (10) starting from the initial generator g0 = 1 and 
fundamental matrix Ω0 = 1: 
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where ⊗  denotes the Kronecker product, and Qk (where 21,...,2,1 nnk ⋅= ) is the matrix of model’s 
parameters identified at operating points corresponded to the lower and upper bounds of inter-
polation intervals [βi,j, βi,j+1]. 
 
3. Predictive control scheme 
 

The GPC procedure developed by Clarke [4] is adapted for the anti-sway crane predictive 
strategy. The GPC procedure uses a CARIMA (Controlled Auto-Regressive and Integrated 
Moving-Average) model. The discrete-time models (1) and (2) are rewritten to the form: 
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where ( ) ( ) /s xx t T v t= ∆ , ∆ = 1 – z-1, Ts is a sample time, ξ1 and ξ2 are the uncorrelated random 
sequences, and the polynomials in the backward shift operator are related to (1) and (2) as follows: 
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The objective function to be minimized is formulated as the weighted sum of squared error of 
crane position (difference between the reference signal xr and the crane position) and payload 
sway angle over the prediction horizon (Np), and the control increments within the control horizon 
(Nu): 
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where λ1 and λ2 are the weighting coefficients and the j-step ahead predictors are derived from: 
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where G1(z–1), G2(z–1), F1(z–1) and F2(z–1) are the polynomials recalculated through recursion of the 
Diophantine equation.  

According to [4], the vectors of optimal output predictions can be formulated as follows: 

 11
~ˆ fuGx += , (17) 

 22
~ˆ fuGα += . (18) 

Taking into account the constraints for control signal (umin, umax) and sway angle of a payload, 
the cost function can be rewritten as: 

 
( ) ( ) ( ) ( )

)~~()~~(

~~~~~~

min2max1

2222211111

uuvuuv
uufuGfuGxfuGxfuG

−+−+

++++−+−+=
TT

TT
r

T
rJ λλ

, (19) 

where: 
( )( )2max

1
2

1
minmin ,max~ fΙGuΙu +−−= −− αzu , 

( )( )2max
1

2
1

maxmax ,min~ fΙGuΙu −−= −− αzu , 
and ν1 and ν2 are the Lagrangian multiplier vectors. The optimization problem can be solved using 
the Lemkes algorithm [3] for the Kuhn-Tucker complimentary conditions formulated as: 
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4. Experiments on a laboratory stand 
 

The proposed control techniques was tested on a laboratory scaled overhead crane equipped 
with DC motors, and incremental encoders used for sensing the position of crane and sway angle 
of a payload. The control algorithm was implemented on PAC with RX3i controller using the 
structured text, and the measurement system was completed with the PC equipped with the 
PLC1710HG measurement card. 

The objective of the control was positioning the crane to xr = 1 m and reducing the payload 
deflection within the tolerance ±0.02 m, where the payload deflection was approximated as 
a product of rope length and sway angle of a payload (lα). The one-step ahead prediction strategy 
was tested with the experimentally selected weighting coefficients λ1 = 2.4, λ2 = 0.3, sample time 
Ts = 0.1 s, and for the control signal range 10)(10 ≤≤− tu , while the payload deflection in the 
transient state was constrained to lαmax = +/– 0.12 m.  

The two predictive control strategies were compared: (i) GPC with the RLS estimation with 
forgetting factor µ = 0.99, (ii) GPC with the P1-TS fuzzy interpolator used to estimate the 
parameters of the crane dynamic model. In the first approach, the incremental encoder was used as 
a source of the sway angle feedback signal, while in the second case the model-based estimation of 
sway angle of a payload is applied. Hence, in the second approach, the P1-TS fuzzy model is used 
to interpolate the parameters within the range of scheduling variables: l = [1.0, 2.2] m and m = [10, 
90] kg. To find the linear models of a system, the identification experiments were carried out at the 
operating points: (1.0 m, 10 kg), (1.6 m, 10 kg), (2.2 m, 10 kg), (1.0 m, 90 kg), (1.6 m, 90 kg), (2.2 
m, 90 kg). Thus, the interpolation intervals with the linear membership functions (7) were set as 
[β1,1, β1,2] = [1.0, 1.6] m, [β1,2, β1,3] = [1.6, 2.2] m, and [β2,1, β2,2] = [10, 90] kg. 

Figures 2 and 3 present the comparison between the GPC-RLS and GPC-P1TS methods. The 
experiments were conducted for rope lengths l = {1.3, 1.9} m and mass of a payload m = 50 kg. 
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Both control techniques show similar performances, which proved the robustness of the proposed 
GPC system both, using the RLS method and P1-TS fuzzy interpolator. The settling time is 
between 4.9 and 5.0 seconds, and the payload deflection in transient states does not exceed the 
limit of +/– 0.12 m. The GPC scheme ensures fast positioning of a payload and sway suppression 
within the assumed tolerance of a payload deflection ±0.02 m. The both methods, the GPC-RLS 
(with sensor feedback of payload deflection) and GPC-P1TS (sensorless approach with the P1-TS 
fuzzy interpolator adapted to estimate the crane’s dynamic model parameters) proved robustness 
against the operating conditions variation. 

 

 

 
Fig. 2. Crane position and payload deflection – experiments for l =1.3 m and m = 50 kg – comparison between GPC 

with RLS and P1-TS fuzzy estimation 
 

 

 
Fig. 3. Crane position and payload deflection – experiments for l =1.9 m and m = 50 kg – comparison between GPC 

with RLS and P1-TS fuzzy estimation 
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5. Conclusions 
 

The GPC-based control schemes coupled with the RLS estimation algorithm and fuzzy 
interpolation of the parameters of an LPV discrete time crane dynamic model are compared in the 
article. The robust control technique is developed with respect to the constraints on sway angle of 
a payload and control signal. The experiments carried out on a laboratory scaled of an overhead 
crane confirmed effectiveness and feasibility of the proposed solutions. The implementation of 
control systems was performed using the PAC system with RX3i controller. The GPC-RLS control 
approach was realized with using the incremental encoder utilized in the sway angle measurement 
system. In the sensorless control, approach (GPC-P1TS) the sway angle is estimated by using the 
discrete time pendulum model of a crane with parameters estimated by the P1-TS fuzzy 
interpolator. The series of experiments carried out for different operating points proved robustness 
of the control approaches presented in the article. 
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