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Abstract 

This paper presents description the mathematical of a phenomenon accompanying the flow working fluid through 
a microgap. The laminar flow of liquids in crevices of smooth hydraulic resistance and theoretical model for the 
distribution of pressure in the gap and the flow rate through the slot hydraulic is presented. The theoretical models for 
the distribution of pressure and flow in the microgap on conventional hydraulic resistance of hydraulic joints have 
shape related to the errors of their execution. In deriving the theoretical models, by introducing a variable height of 
the gap in the initial episode was founded stream velocity profile variability in the hydraulic fluid retaining gap and 
zero values of local losses at the entrance to the slot. Diphase flow of liquid through the microgap is described. The 
colmatage process effect on the diphase liquid flow through the microgap is treated as that of the uniphase liquid flow 
through the variable geometric structure area. With assumptions, the colmatage process is defined as a stochastic 
Markov process. The particles being trapped in the microgap divide its area on separate segments. Their number and 
characteristics dimensions are interpreted as a random vector in space with a variable number and dimensions.  

Keywords: aviation, hydraulic drive, hydraulic resistance gap, fluid pressure, fluid flow, the gap 
 
1. Introduction 
 

Working fluid in fluid systems serves as an energy carrier and at the same time is a lubricating 
agent between moving elements often subject to substantial unit pressures or substantial relative 
velocities. It causes a change in the basic characteristic of hydraulic device machine such as the 
required linearity, assumed hysteresis and the leak to the outside or the working stability.  

For many reasons a working fluid contains impurities leading to disturbances of normal 
operation or the wear of system parts [4, 5, 10, 16]. Experiments show that the presence 
of impurities in working fluids is the cause of material destruction due to friction, abrasion of 
material working surfaces and erosive wear of element surfaces [7, 10, 14, 15].  

During lab research and operation experience with fluid-system based devices and machines it 
was established that using working fluids comprising a certain concentration of impurities causes  
a phenomenon of a gradual decrease in the active cross-section of a gap resulting from the 
absorption of particles dispersed in a fluid by gap walls. The research conducted at the Air Force 
Institute of Technology conformed the thesis that leaks through a gap vary with time as if the 
phenomenon of contamination of a gap with hard particles occurred [12, 13]. When fluid flows 
through a microgap, the phenomenon of stopping of the particles suspended in this gap and  
a change of the efficient flow surface of the gap occurs. In some cases, with time, fluid completely 
stops leaking through a microgap. 

Phenomena associated with the flow of working fluids through microgaps are not yet 
sufficiently researched. So far, only few works dealing with this problem were published [1-3, 6].  

The subject of the following study is the analysis and description of the flow of fluids through 
a microgap regarded as a hydraulic resistance element. Basic equations describing the motion of 
Newtonian fluid the hydraulic retaining slot due to three main principles of mechanics [8, 9, 11]: 
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the principle of conservation of mass (continuity equation), the principle of conservation of 
momentum and angular momentum and the principle of conservation of energy. These equations 
are not closed system. Therefore, they should be supplemented by additional equations expressing 
the state of density, viscosity and thermal conductivity as a function of pressure and temperature, 
as well as on the field of mass forces unit. The general solution of these equations, it is not known, 
and the designation of their solutions, which are functions of four independent variables and 
subject to specified initial conditions and boundary, encounters great difficulties. For the 
description of the flow of working fluids, fluid parameters of a dimensional span of suspension 
particles and the mechanism responsible for variations of the flow characteristic of a microgap as 
observed in daily practice were taken into account. Observations of phenomena taking place, when 
a fluid flows through a microgap, allows us a statement that the flow process of a fluid through  
a gap and stopping of hard particles in a gap should be treated as a stochastic one and be analysed 
from a probability viewpoint.  

The results of the following analysis can serve to study the influence of impurities contained in 
a fluid on the change of basic characteristic parameters of a hydraulic device and those of an entire 
fluid system. 
 
2. Assumptions for a physical model of the flow of working fluid through a microgap 
 

In order to construe the process of fluid flow through a gap a physical model of the flow 
phenomenon the following assumptions was adopted.  
1) An ordered pair of real numbers where one number is the value of the volumetric flow rate of 

fluid θ flowing through a discussed gap and the other number is the pressure difference ∆p 
across an element, will be called the hydraulic state of a microgap. The flow rate of a fluid 
flowing through a gap can be presented as a sum of volumetric unitary flow rates flowing 
through component ranges a gap is divided into, i.e. [2]: 

 ∑
=

=
N

i

K
i

b
u hKQ

1
, (1) 

where:  
K – coefficient depending on flow conditions and gap geometry, i.e. the coefficient taking into 

account the pressure drop, flow length, fluid viscosity and the geometrical gap length, 
h – gap height, 
N – lowest number of particles of an assumed size, indispensable completely to block the gap, 
u – flow-through length of a microgap, 
b – shape deformation factor. 
2) In a hydro energetic element, a gap with stiff, impermeable and parallel walls is generated. 

This gap dimensions are as follows: lo – microgap width in the direction perpendicular to the 
fluid flow, h – microgap height, m – geometrical length of a gap along the fluid flow as these 
dimensions. By our intuition we assume that every particle larger than size h of the gap is 
stopped in it, thus reducing the active flow width of the gap by the value of h. 

3) A microgap is regarded a hydraulic resistance element. Seen from the aspect of energetic 
transformations a microgap is classed as a dissipative element. A characteristic of a gap seen as 
such can presented as: 

 θ = G ∆p, (2) 
where:  
θ – fluid flow rate in the gap, 
G – gap conductivity, 
∆p – pressure drop across the gap. 
4) A change of the gap state at a steady pressure drop during the working fluid flow through it can 
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only result from stopping solid particles dispersed in fluid on inlet edges of the gap exclusively 
due to different geometrical dimensions of particles and distances between the gap edges.  
A change of the microgap state at a steady pressure drop is a result of a change of the 
conductivity, this being a function of, among other things, the number, arrangement and 
properties of particles stopped across it. The conductivity of a microgap will change; it will 
decrease due to the effect of the gap blocking, then and only then, when there is a time interval 
∆t within an observation interval (0, t), over which the probability of occurring solid particles 
of dimensions greater than the gap height h in a fluid is ≠ 0; we may express it as follows: 
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5) At any moment at t > 0 the most one solid particle is added to the gap and the sequence of 
moments of particle arrivals to the gap has no accumulation point.  

6) At every moment ranges a microgap is divided into are of equal length m, and their cross-
section is rectangular, with m > 0 corresponding to the flow length of the gap. At the t > 0 
moment the gap cross-section is h × l0.  

7) Every particle arriving at the gap arrives precisely at one of the ranges the gap was divided into 
before the particle arrival. The capacity of arresting by a singular range of particles contained 
in a working fluid is clearly defined by the characteristic dimension x of an arriving particle, 
where x > 0. 

8) A single range of the h × l0, h > 0, l0 > 0 cross-section arrests an arriving particle with the 
characteristic dimension x, then and only then, if x ≥ min{h, l0}. In case x ≥ l0 a range is 
liquidated, and if h ≤ x < l0 a range is divided into two sections with dimensions h × l1 and  
h × l2, where l1 + l2 + x = l0 [10].  

9) The flow rate through a single range with the h x l cross-section and length m is equal to the 
stationary, steady-state flow through a rectangular orifice h x l in a parallel-walled plate with 
the thickness m, m ≥ 0, h > 0, l > 0, where m and h are by assumption parameters 
characterizing the gap geometry. At any moment, the flow rate through a gap is equal to the 
sum of flow rates through individual ranges the gap at a given moment is into divided.  

 
3. Pressure distribution and flow rate of liquids working gaps in typical hydraulic resistance 
 

The flow of hydraulic fluid through a slot bearing the author has treated as a stationary flow 
between two flat and parallel plates located from each other at such a distance that they form  
a hydraulic bearing gap. As is known, the length of the initial section of the hydraulic retaining 
slots in which there is a stabilization of the flow (velocity distributions in any cross-sections are 
identical) is proportional to the Reynolds number and height of the hydraulic retaining slots. Due 
to the fact that the initial gap distance of the liquid velocity, profile in the gap is not formed by the 
reflection on the speed of the liquid in the initial section of the slot gap height change. 

Taking into account the change of the flow channel (the hydraulic retaining slots) dependence 
on the flow of hydraulic fluid in the retaining slot has the form [8, 12]: 
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and dependence on the pressure distribution in the gap has the form [1]: 
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Integral constants E and G are determined using the continuity of velocity boundary conditions 
on the stationary walls of the form: u(δ1,z) = u(δ2,z) = 0 and w(δ1,z) = w(δ2,z) = 0 and pressure p(z) 
satisfying the conditions: p(x,0) = p0 and p(x,m) = p1. Error of the approximations, with ls / h → ∞, 
is 16%.  

Entering into formulas (Eq 4) and (Eq 5) boundary conditions was determined depending on 
the pressure distribution in the gap and the fluid flow through the gap for typical hydraulic 
retaining slots. Shapes of typical hydraulic retaining slots are associated with the errors of their 
execution. 

For hydraulic flat retaining slots of non-parallel walls schematically shown in Fig. 1a the 
distribution of pressure in the gap model is described: 
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and fluid flow in the gap model: 
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For these patterns can be introduced, dimensionless coefficient related to the geometry of the 
slot (ls, H, h, m) of the form: 

h
hHk −

=1
. 

For hydraulic flat retaining slots of non-parallel walls schematically shown in Fig. 1b the 
distribution of pressure in the gap is described by the formula: 
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and fluid flow in the gap model: 
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where: 
h

Hhk −
=2

. 

 
a) 

 

b)  

 
Fig. 1. Schematic hydraulic flat retaining slots of non-parallel walls 

 
For the transverse annular, hydraulic retaining slots (front slit formed by two parallel plates 

round) schematically shown in Fig. 2 the pressure distribution in the gap model are described: 
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and fluid flow in the gap model: 
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For the longitudinal eccentric annular retaining slot, hydraulic schematic shown in Fig. 3 the 
distribution of pressure in the gap model is described: 

 ( ) 0prp =  (12) 

and fluid flow in the gap model: 

 ( )
m

prrrQ
µ

π
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3
121 ∆−

≅ . (13) 

 

  

Fig. 2. Leading hydraulic resistance gap formed by two 
parallel circular plates 

Fig. 3. Hydraulic longitudinal annular gap eccentric 
resistance 

 
Although these models are designated with the linearized system of equations, using them, 

small ranges of variation in the flow cross the gap and small Reynolds numbers is warranted. 
 
4. Interpretation of the working fluid flow as a two-phase mix through a microgap as the 
step stochastic Markov process 
 

The observation of phenomena taking place when a fluid flows through a microgap allows us 
to establish that the working fluid flow process and arresting hard particles in a microgap should 
be regarded as a stochastic one and discussed under a probability category. 

We assume that the Ei state is a state in which at the t moment in a volume unit there are  
i particles arrested and which after a ∆t→0 time transforms into the Ei+1 state. The probability of 
transition from the Ei state into the Ei+1 state after the ∆t time interval is given by the formula: 

 Pi+1 = λ(i)∆t + Q(∆t), (14) 

where λ(i) is a function of the intensity of arresting particles in a microgap and ( ) 0lim
0

=
∆
∆

→∆ t
tQ

t
, 

meaning that the probability of transition of more than one particle into the Ei+1 state approaches 
zero faster than ∆t. 

According to assumptions for the physical model, the following mathematical model for the 
flow of working fluid as a two-stage mix through a microgap was adopted. 

The microgap state at any given moment t > 0 is defined clearly by the system of random 
variables: 
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 ( ) ( ) ( ) ( ){ }tLtLtRtS
tR,........,, 1= , (15) 

where correspondingly: 
R(t) – the number of component ranges the gap at the t moment is divided into, 
Li(t) – the dimension of a rectangular range and of that range along the microgap for i = 1, 2, … 
R(t). 

We assume that for R(t) ∈ {0, 1, 2, …}, 0 < Li(t) < L0, L0 < ∞ and for every state of the gap s = 
{r, l1, l2, … lr} the fluid flow rate through individual ranges is defined with a probability  
level = 1 as: 

 ( ) ( ) ( ){ }rr lQlQlQQ ,.......,, 21= , (16) 

where Q(li) is a function determining the flow rate through a singular range the characteristic 
dimension of which is given by the variable li, such, that a singular range of the h × l0 ,  
h > 0, l0 > 0 cross-section stops an arriving particle with the x dimension, then and only then, if x 
≥ min{h, l0}, and when  x ≥ l0 a range is liquidated and when h ≤ x < l0  a range is divided into two 
ranges of the dimension  h × l1 and h × l2, where l1 + l2 + x = l0.   The Q(li) function determining 
the flow rate through a singular range is a continuous function and closely increasing, i.e.  
( ) ( ) .lim;00 ∞→=

∞→
lQQ

L
 The fluid flow rate through a singular range can be calculated from the 

following formula [3]: 
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Let us assume the stochastic process S(·) = {S(t); t > 0} is the homogeneous Markov process. 
Therefore, a probability structure of the S(·) process is defined by a transition probability function, 
which describes the way that the changes of state occur. The probability structure of the S(·) 
process is therefore given by the transition probability function describing how the changes of 
state occur. We designate the conditional distribution of random variables {R(t), L1(t), …. , 
LR(t)(t)}as ( )( )''

2
'
121 ,....,,/,...., rr

r
t llldldldlP , however, on condition that R(0) = r’ ≥ 0 and  

L1(0) = ''
2
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rl  over the {R(t) = r}; r ≥ 1 subset.  Talking about the r of random 
variables, we assume them determined in the same probability space and that their joint 
conditional distribution exists. In this case, Lk can be interpreted as variables in the space of 
samples. Without doubt, the fact that the changes of states are accompanied by the change of the 
number of dimensions of the space where random variables are determined is an aggravation of  
a notation for the discussed process. Of course, for the A subset contained in the space of samples 
the following notation:  
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is the probability of the R(t) = r occurrence and {[L1(t), … , Lr(t)] ⊂ A} on condition that   
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1L  for i = 1, 2, …, r’, R(0) = r’. 

On account of the assumption of the homogeneity of the transition function for the Markov 
process, the stochastic process S(·) is clearly defined by the conditional distribution of random 
variables {R(t), L1(t), …. , LR(t)(t)}. Let us assume that: 
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rrrr r =+++ '....21 ; j0 = 0,  ∑
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(1 for r = 0 and 0 for r=1, 2,...). 

The equation (19) means that r microgaps of dimensions l1… lr are generated due to  
a stochastically independent division of each of the r’ components of the connectivity with 

''
1 ',..., rll dimensions into ',...,1 rrr parts, where rrrr r =+++ '....21 .  

Making an assumption that during a flow particles are fully carried by the working fluid until 
they are possibly arrested, the transition probability functions of the change of state are as follows: 
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where N is the particle concentration in a working fluid and: 
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( ) ( )lFlP xlikw −=1    for   l > 0. 

Fx denotes a cumulative distribution function of the random variable X corresponding to the 
characteristic dimension x of hard particles in a working fluid.  To determine the properties of  
a step (discontinuous) process, where within small time intervals the system described by this 
process will certainly remain in its initial state or with a small probability, will change onto 
another state, it should be assumed that: 

 ( )( ) ltt ldlP δ→→01
1 , (22) 

where δl designates a deterministic distribution concentrated at the point l for l > 0, and that: 
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where the left side represents a joint conditional distribution of random variables L1(t), L2(t)  on 
condition that the number of component ranges a gap at the t moment is divided into is R(t) = 2, 
R(0) = 1, L(0) = l1, and ξ(dl1, dl2) being the distribution of the variables L1, L2, which with the 
probability of 1 fulfil the condition: L1 +L2 = max {L – Xh, 0}, where Xh designates a random 
variable having a cumulative distribution function: 
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and within the (0, l - h) range the conditional distribution L1 will be unvarying. 
The conditions (22) and (23) imply that a singular connectivity component of the characteristic 
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dimension l for a sufficiently small time t will remain unvarying with a probability close to 1 
inside the (0, t) interval, however, if for a sufficiently short time t, even only once within the range 
(0, t) the gap divides, then it will be exactly one division into two parts.  It will be a division with 
the conditional probability equal to 1, one achieves after placing a section of the random length Xh 
that have the 

hXF cumulative distribution function in the (0, l – Xh) range with an unvarying 
distribution of the position of the left end of this section.  Please note that the

hXF  is a cumulative 
distribution function of the conditional distribution X on condition that l > x > h, i.e. on condition 
that a particle will be arrested due to its characteristic size being too large with respect to the gap 
height: x > h, however, too small to annul this connectivity component:  x < l. 
The Markov’s condition imposes that the conditional distribution of random variables L1(t), L2(t) 
performs the following equation: 
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From the equation (15) follows that for every cumulative distribution function  FX  and for 
every closely increasing function of the flow Q there is only one family of real 
measures ( )( )''

11 ',...,,..., rr
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t lldldlP ,  r’ ≥ 0,  0,....,0 ''
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r
t lldldlP . 

We call the Markov’s process with transition probabilities described by the equation (25) and 
with a probability equal to 1 serving one initial condition S(0) = {1, l0} a ‘probabilistic model’ of 
the working fluid flow through a gap l0 > 0 wide, h > 0 high and m ≥ 0 long. 

In order to assign values of the flow rate Q of the fluid flowing under the constant pressure 
drop ∆p to successive states of the gap one must use the formula (17). After mathematical 
transformations, the formula (17) for the flow rate Q appears as: 
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where 
m

phLQ
µ72

5 3
0

0
∆

= is the flow rate through a flat microgap at t = 0, χ is a parameter of assumed 

exponential distribution of the process, and κ is a dimensionless parameter defining relations 
between the gap height h and the χ parameter.  

The relation (26) points to an exponential character of the working fluid flow process through  
a microgap as a time function. With the formula (26), one is able to determine the relation between 
the volume of the fluid flowing through a gap and the flow process time. 
 

4. Conclusions 
 

The main goal of this article was to present the analysis of the process of fluid flowing through 
a microgap. The phenomenon of working fluid flowing through a microgap was treated as a flow 
in hydraulic elements taking into account parameters of a dimensional distribution of suspended 
particles and mechanisms responsible for the practically experienced varying flow characteristic of 
a microgap.  

In the presented formulas for calculating pressure distribution and fluid flow in a typical 
hydraulic retaining slots do not take into account the impact of the initial segment, which forms  
a laminar velocity profile and the local losses are included only in the specified empirically 
pressure at the inlet. 
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At high values of the ratio of length to the height of the gap flow and low Reynolds numbers 
involved is insignificant pre-cutter and its omission does not lead to significant computational 
errors. 

In the case of hydraulic resistance of the small joints of the flow parameters of the flow length 
is determined by a complicated analysis of the velocity field and pressure in the environment and 
the same slot. The values of liquid flow in the interstices of a low-resistance flow length calculated 
from formulas given in this article only determine the upper limit. 

Basing on observations phenomena of working fluid flowed through a microgap, it was 
established that hard particles are arrested through a microgap in such gap. It should be regarded as 
a stochastic one and discussed from a probability point of view. 

The mathematical model of the working fluid flow through a microgap was formulated in this 
article on the basis of an arbitrary assumption of solely mechanical causes for stopping hard 
particles contained in a working fluid. Despite the fact that the phenomenon itself proceeds 
discontinuously, this model has a continuous character. Taking into consideration the characteristic 
of the medium, in which fluid flows, we assumed that the process of arresting hard suspended 
particles is induced by two mechanisms: the first one consists in stopping particles of suspension 
solely due to dimensional differences between particles and the gap height, and the other one 
results from differences in size of arriving particles and characteristic dimensions of areas limited 
by the gap edges and previously stopped particles.  The latter mechanism, as the dimensional 
spectrum of arrested particles shifts towards ever-decreasing sizes, causes the microgap flow-
through characteristic to be unstable.  

The microgap condition according to the proposed model is described by a system of random 
variables. It was assumed that the stochastic process S(·) = {S(t); t > 0} is the homogenous 
Markov process. The probability structure of the S(·) process was described with the aid of the 
transition probability function, which describes the way in which the changes of state occur. 
Observation of changes of flow rate of fluid flowing through a microgap means of course the 
observation of results of a process understood as the Markov process as it happens.  A condition of 
a process at a given time point or after a certain amount of fluid has flowed through, does not 
determine clearly processes to follow, but solely a probability that a state of a system is one 
belonging to a subset of a range of states the flow rate values are assigned to. Owing to the 
description of the flow of working fluid through a microgap in a step-like, stochastic process of  
a Markov’s structure it is possible now to clearly interpret the process of the clogging a microgap 
with regard to probability. 

The results of the above considerations can be used to study the influence of contaminations on 
the process of gradual decrease in the effective cross-section of a microgap resulting from 
absorption of particles dispersed in a fluid by gap walls as well as to research into influence of 
contaminations on the operation of hydrostatic systems. 
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