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Abstract 

This investigation deals with the problem of satellite constellation maintenance. An autonomous control strategy 
is presented in this paper. Main task of the proposed control algorithm is relative station keeping where the relative 
positions of the satellites are maintained. The approach utilizes model predictive control with successive linearization 
of a nonlinear model of relative motion between the satellites. The predictive algorithm takes into account the 
variability of the future model parameters within assumed prediction horizon. Since the future model parameters are 
dependent on future control actions, the presented strategy employs a heuristic method for preliminary control 
trajectory estimation. The proposed method also enables the constellation deployment, reorganization, relative station 
keeping for large separations between the satellites, and control for the case where the reference point is moving in 
a highly elliptical orbit. Performance of the algorithm was verified using numerical simulations. 
 The presented algorithm is able to cope with the tasks of deployment, reorganization and maintenance of satellite 
constellation. 

Keywords: satellites constellation, spacecraft control, orbital mechanics, model predictive control 
 
1. Introduction  
 

The concept of satellites constellation gives a series of advantages over a single and bigger 
spacecraft. The advantages include synchronous measurements over a dispersed area, improvements 
in performance and survivability, ability to be launched in multiplies, requiring possibly cheaper 
dedicated launch vehicles. They also allow for cheaper designs. 

The need for constellation maintenance is an outcome of two reasons: first, each satellite is 
moving in an orbit slightly different from intended. If left uncorrected, these small differences will 
accumulate with time to disorganize the overall structure of the constellation. The second reason 
arises from orbit perturbations of a various manner. 

Deployment and maintaining of constellation structure for a long term can be a major element 
of economic cost and risk. Both can be significantly reduced by low-cost, autonomous orbit 
maintenance methods and algorithms. Autonomous constellation maintenance system enables to 
maintain the constellation structure to very high precision for much lower cost and risk than is 
currently available with ground-based orbit maintenance. 
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An autonomous maintenance strategy proposed in this paper is based on model predictive control 
(MPC) for relative motion between each of controlled spacecraft and a reference satellite 
(a mothership) or a chosen reference point. Since fuel consumption is a critical parameter in the 
space industry, the proposed controller enables calculation of quasi-optimal control trajectories, 
wherein the cost function includes metrics responsible for minimization of the fuel use. As shown in 
[1], the proposed control algorithm allows for asymptotically stable control process, even with 
assumption of separations up to tens of thousands kilometres, what far exceeds the requirements for 
the orbital station keeping problem. Additionally, the assumed control algorithm allows for control 
in the case where the constellation is moving in a highly elliptical orbit. The algorithm enables to 
apply constraints on relative motion state, what allows for collision-free and safe reorganization of 
the satellite constellation. 

The proposed controller employs a full, time-variant, nonlinear model of relative motion (relative 
position and relative velocity), while the vast majority of MPC approaches to relative motion control 
utilizes linear models, such as Hill-Clohessy-Wiltshire (HCW) equations [2, 3] or Tschauner-
Hempel model [4]. Applicability of the linear models is limited to cases where the relative distance 
is small, not exceeding 1000 meters. 

The proposed algorithm considers a variability of model parameters over a prediction horizon. 
Such feature is obtained by generation of local linear models for every controller step within 
a prediction horizon. The local linear models are derived by a linearization of the full nonlinear 
model.  

Parameters of the nonlinear model are dependent on state, control and time. In order to 
estimate future model parameters, it is necessary to estimate future control actions. In this 
investigation, this problem is solved by an application of a finite impulse response (FIR) filter as 
a heuristic method for preliminary estimation of the future control trajectory. 
 
2. Mathematical Model of Relative Motion 
 

The control strategy proposed in this paper requires an internal model of relative motion between 
each of controlled spacecraft and mothership (reference satellite or a reference point). Let us call 
further the controlled satellite as a deputy spacecraft. A set of nonlinear equations of a single deputy 
spacecraft motion relative to the reference satellite will be used to formulate a model of relative 
motion for all the deputy satellites within the constellation. 
 
2.1. Reference Frame 
 

The relative motion is described in Cartesian Local Vertical – Local Horizontal (LVLH) frame 
depicted in Fig. 1.  

 

 
Fig. 1. LVLH reference frame 
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The LVLH frame is attached to the reference satellite (or a chosen reference point) and rotates 
with the radius vector r of this basis. Orientation of the frame is determined by the unit vector triad 
{𝐨𝐨�𝑟𝑟 ,𝐨𝐨�𝜃𝜃,𝐨𝐨�ℎ} where vector 𝐨𝐨�𝑟𝑟 lies in the radial direction of the reference satellite, 𝐨𝐨�ℎ is parallel to the 
orbit angular momentum vector, and 𝐨𝐨�𝜃𝜃 completes the right-handed orthogonal triad. 

Position of j-th deputy satellite relative to the reference satellite can be expressed by Cartesian 
coordinate vector 𝛒𝛒𝑗𝑗: 

 𝛒𝛒𝑗𝑗 = 𝑥𝑥𝑗𝑗,1𝐨𝐨�𝑟𝑟 + 𝑥𝑥𝑗𝑗,2𝐨𝐨�𝜃𝜃 + 𝑥𝑥𝑗𝑗,3𝐨𝐨�ℎ. (1) 

 
2.2. Model of True Anomaly 
 

Most of orbital relative motion models utilize the notion of true anomaly [5], [6]. Here we will 
develop a strategy to express the true anomaly as a function of time. First, let us recall the notion 
of mean anomaly: 

 𝑀𝑀 = 𝑀𝑀0 + 𝑛𝑛(𝑡𝑡 − 𝑡𝑡0), (2) 

where t denotes the time, 𝑀𝑀0 is an initial value for the mean anomaly at an initial time moment 𝑡𝑡0, 
while n denotes mean angular motion: 

 𝑛𝑛 = � 𝜇𝜇
𝑎𝑎3

, (3) 

wherein a is semi-major axis of the orbit and 𝜇𝜇 is the standard gravitational parameter.  
Given mean anomaly M, we can solve the Kepler’s Equation for eccentric anomaly E: 

 𝑀𝑀 = 𝐸𝐸 − 𝑒𝑒 sin𝐸𝐸, (4) 

where e is the orbit eccentricity. Equation 4 can be solved using simple numerical method, such us 
the Newton’s method. 

Finally, using eccentric anomaly E we can find the true anomaly f: 

 tan 𝑓𝑓
2

= �1+𝑒𝑒
1−𝑒𝑒

tan 𝐸𝐸
2
. (5) 

First derivative of the true anomaly is an important model parameter: 

 𝑓𝑓̇ = �𝜇𝜇𝜇𝜇
𝑟𝑟4

, (6) 

wherein 𝑟𝑟 is a distance from the Earth's center to satellite’s centre of mass and p is a parameter 
called semilatus rectum: 

 𝑝𝑝 = 𝑎𝑎(1 − 𝑒𝑒2). (7) 

 
2.3. Model of Relative Motion for a Single Deputy Satellite 
 

Derivation of the exact, time-variant, nonlinear equations of relative motion in LVLH frame, 
further called NERM, can be found in [1] and [5]. The equations are presented below: 

 �̈�𝑥𝑗𝑗,1 − 2𝑓𝑓̇ ��̇�𝑥𝑗𝑗,2 − 𝑥𝑥𝑗𝑗,2
�̇�𝑟
𝑟𝑟
� − 𝑥𝑥𝑗𝑗,1𝑓𝑓̇2 −

𝜇𝜇
𝑟𝑟2

= − 𝜇𝜇
𝑟𝑟𝑗𝑗
3 �𝑟𝑟 + 𝑥𝑥𝑗𝑗,1� + 𝑢𝑢𝑗𝑗,1

𝑚𝑚𝑗𝑗
, (8) 

 �̈�𝑥𝑗𝑗,2 + 2𝑓𝑓̇ ��̇�𝑥𝑗𝑗,1 − 𝑥𝑥𝑗𝑗,1
�̇�𝑟
𝑟𝑟
� − 𝑥𝑥𝑗𝑗,2𝑓𝑓̇2 = − 𝜇𝜇

𝑟𝑟𝑗𝑗
3 𝑥𝑥𝑗𝑗,2 + 𝑢𝑢𝑗𝑗,2

𝑚𝑚𝑗𝑗
, (9) 

 �̈�𝑥𝑗𝑗,3 = − 𝜇𝜇
𝑟𝑟𝑗𝑗
3 𝑥𝑥𝑗𝑗,3 + 𝑢𝑢𝑗𝑗,3

𝑚𝑚𝑗𝑗
, (10) 
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wherein �̇�𝑥𝑗𝑗,1 and �̈�𝑥𝑗𝑗,1 are relative velocity and acceleration of j-th satellite in the direction pointed by 
the unit vector 𝐨𝐨�𝑟𝑟, respectively, �̇�𝑥𝑗𝑗,2 and �̈�𝑥𝑗𝑗,2 are velocity and acceleration of j-th satellite in the 
direction pointed by the unit vector 𝐨𝐨�𝜃𝜃, respectively, whereas �̈�𝑥𝑗𝑗,3 is acceleration in the direction 
pointed by the 𝐨𝐨�ℎ vector. 

Further, f is a true anomaly of the reference satellite, 𝑟𝑟 and 𝑟𝑟𝑗𝑗 is the current distances from the 
Earth's center to the reference and j-th deputy satellite respectively, wherein 𝑢𝑢𝑗𝑗,1, 𝑢𝑢𝑗𝑗,2 and 𝑢𝑢𝑢𝑢,3 are 
components of a j-th control vector representing control forces acting on j-th deputy satellite and 𝑚𝑚𝑗𝑗 
is the current mass of j-th deputy satellite. 

Since it is assumed that the deputy satellites manoeuvre using expulsion of significant amount of 
mass, an impact of j-th deputy spacecraft mass 𝑚𝑚𝑗𝑗 variability has been considered. 

Let us assume that �̇�𝒙𝑗𝑗,1 = 𝒙𝒙𝑗𝑗,4, �̇�𝒙𝑗𝑗,2 = 𝒙𝒙𝑗𝑗,5, �̇�𝒙𝑗𝑗,3 = 𝒙𝒙𝑗𝑗,6 and that the positions and velocities of j-th 
satellite relative to the reference satellite or point can be expressed using the following state vector: 

 𝐱𝐱𝑗𝑗 = [𝒙𝒙𝑗𝑗,1 𝒙𝒙𝑗𝑗,2 𝒙𝒙𝑗𝑗,3 𝒙𝒙𝑗𝑗,4 𝒙𝒙𝑗𝑗,5 𝒙𝒙
𝑗𝑗,6]𝑻𝑻. (11) 

Then, the relative motion of j-th deputy satellite can be represented in a state-space: 

�̇�𝐱𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

𝑓𝑓̇2 − 𝜇𝜇
𝑟𝑟𝑗𝑗
3 2𝑓𝑓̇ �̇�𝑟

𝑟𝑟
0

2𝑓𝑓̇ �̇�𝑟
𝑟𝑟

𝑓𝑓̇2 − 𝜇𝜇
𝑟𝑟𝑗𝑗
3 0

0 0 − 𝜇𝜇
𝑟𝑟𝑗𝑗
3

0 2𝑓𝑓̇ 0

−2𝑓𝑓̇ 0 0

0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐱𝐱𝑗𝑗 +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0 0 0
1
𝑚𝑚𝑗𝑗

0 0

0 1
𝑚𝑚𝑗𝑗

0

0 0 1
𝑚𝑚𝑗𝑗⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐮𝐮𝑗𝑗 +

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0

𝜇𝜇 � 1
𝑟𝑟2
− 𝑟𝑟

𝑟𝑟𝑗𝑗
3�

0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  (12) 

or: 

 �̇�𝐱𝑗𝑗 = 𝐀𝐀𝑗𝑗𝐱𝐱𝑗𝑗 + 𝐁𝐁𝑗𝑗𝐮𝐮𝑗𝑗 + 𝐕𝐕𝑗𝑗, (13) 

where 𝐀𝐀𝑗𝑗 is a state matrix, 𝐁𝐁𝑗𝑗 is an input matrix and 𝐕𝐕𝑗𝑗 is a matrix of nonlinear term. The control 
vector is expressed as: 

 𝐮𝐮𝒋𝒋 = [𝐮𝐮𝑗𝑗,1 𝐮𝐮𝑗𝑗,2 𝐮𝐮𝑗𝑗,3]𝑻𝑻. (14) 

 
2.4. Model of Relative Motion for All Deputies 
 

Let us assume that the constellation consists of N controlled satellites (deputies). In case where 
the reference point is associated with a physical satellite, the constellation also includes this 
uncontrolled mothership (a reference satellite). Then, the motion of deputy satellites relative to the 
reference point can be expressed using the following state vector: 

 𝐱𝐱𝑐𝑐 = [𝐱𝐱1 𝐱𝐱2 … 𝐱𝐱𝑁𝑁]𝑻𝑻, (15) 

wherein 𝐱𝐱1, 𝐱𝐱2, …, 𝐱𝐱𝑁𝑁 are the 𝐱𝐱𝑗𝑗 vectors defined by Equation 11, where 𝑢𝑢 ∈ {1, 2, … ,𝑁𝑁}. 
Using this state vector, we can express the motion of all the deputy satellites using the following 

state-space representation: 

 �̇�𝐱𝑐𝑐 =

⎣
⎢
⎢
⎡
𝐀𝐀1 𝟎𝟎6,6
𝟎𝟎6,6 𝐀𝐀2

𝟎𝟎6,6 𝟎𝟎6,6
𝟎𝟎6,6 𝟎𝟎6,6

𝟎𝟎6,6 𝟎𝟎6,6
𝟎𝟎6,6 𝟎𝟎6,6

⋱ 𝟎𝟎6,6
𝟎𝟎6,6 𝐀𝐀𝑁𝑁 ⎦

⎥
⎥
⎤
�

𝐱𝐱1
𝐱𝐱2
⋮
𝐱𝐱𝑁𝑁

� +

⎣
⎢
⎢
⎡
𝐁𝐁1 𝟎𝟎6,3
𝟎𝟎6,3 𝐁𝐁2

𝟎𝟎6,3 𝟎𝟎6,3
𝟎𝟎6,3 𝟎𝟎6,3

𝟎𝟎6,3 𝟎𝟎6,3
𝟎𝟎6,3 𝟎𝟎6,3

⋱ 𝟎𝟎6,3
𝟎𝟎6,3 𝐁𝐁𝑁𝑁 ⎦

⎥
⎥
⎤
�

𝐮𝐮1
𝐮𝐮2
⋮
𝐮𝐮𝑁𝑁

� + �

𝐕𝐕1
𝐕𝐕2
⋮
𝐕𝐕𝑁𝑁

�, (16) 
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wherein 𝐀𝐀1, 𝐀𝐀2, …, 𝐀𝐀𝑁𝑁 = 𝐀𝐀𝑗𝑗 and 𝐁𝐁1, 𝐁𝐁2, …, 𝐁𝐁𝑁𝑁 = 𝐁𝐁𝑗𝑗 while 𝐕𝐕1, 𝐕𝐕2, …, 𝐕𝐕𝑁𝑁 = 𝐕𝐕𝑗𝑗, for j=1,2, …, N. 
In order to provide an internal model for the discrete predictive controller, Equation 16 
is transformed into discrete state-space representation. 
 
3. Controller Design 
 

Model predictive control (MPC), also referred to as moving horizon control or receding horizon 
control, is an advanced method of dynamic systems control. This investigation considers discrete 
time predictive control only. 

Model predictive controllers computes control action by periodical solving an optimal control 
problem over finite future horizon, possibly subject to constraints on the inputs and outputs. The 
optimal control problem is solved using the current state estimate of the controlled process as the 
initial state. The optimization yields an optimal control sequence, however only the first control 
action in this sequence is applied to the plant. The whole procedure is repeated at the next sampling 
instant. An excellent overview of MPC algorithms and their history can be found in [7]. An 
introduction to theoretical and practical aspects of the most commonly used MPC strategies is 
presented in [8]. A survey on the contemporary MPC approaches is provided by [9]. 

In this investigation, the control of spacecraft relative motion is calculated using a novel 
formulation of discrete model predictive control algorithm. The basic scheme of the proposed 
algorithm is presented in Fig. 2. The ultimate goal was to design a relatively simple and reliable 
controller for the deployment, reorganization and maintenance problems. 

The controller is equipped with a discrete, time-variant, nonlinear model of relative motion, 
obtained by discretization of Equation 16. In Fig. 2, this model is designated as nonlinear model I 
and takes the following form: 

 𝐱𝐱𝑐𝑐(𝑘𝑘 + 1) = 𝐀𝐀𝑐𝑐(𝑘𝑘)𝐱𝐱𝑐𝑐(𝑘𝑘) + 𝐁𝐁𝑐𝑐(𝑘𝑘)𝐮𝐮𝑐𝑐(𝑘𝑘) + 𝐕𝐕𝑐𝑐(𝑘𝑘). (17) 

where k is a discrete time sampling instant. A simplified version of the above model is nonlinear 
model II, where the matrix of nonlinear term 𝐕𝐕𝑐𝑐(𝑘𝑘) is omitted and further treated as disturbance to 
the process dynamics: 

 𝐱𝐱𝑐𝑐(𝑘𝑘 + 1) = 𝐀𝐀𝑐𝑐(𝑘𝑘)𝐱𝐱𝑐𝑐(𝑘𝑘) + 𝐁𝐁𝑐𝑐(𝑘𝑘)𝐮𝐮𝑐𝑐(𝑘𝑘). (18) 

The algorithm obtains a set of local, time-invariant, linear models by calculation of parameters of 
nonlinear model II for the current and predicted operation points within prediction horizon. Each 
local model corresponds to each prediction horizon step. The set of local linear models distributed 
over the prediction horizon enables for consideration of the model parameters time-variance. 

However, the model parameters over the prediction horizon are dependent on future states and 
future control input values. Since the model parameters estimation is performed before calculation of 
the current control action, a preliminary control trajectory estimate is found in a heuristic manner 
using a filter with finite impulse response (FIR).  

Each local model is augmented using an embedded integrator, forming a set of Increment-Input-
Output (IIO) models. This allows the controller to reject constant disturbances without steady-state 
errors.  

Further, the set of augmented IIO models is used to formulate an output prediction system, in 
order to predict the output trajectory (of relative motion) within the prediction horizon. The output 
trajectory prediction system is then provided to the cost function. In its most general form, the cost 
function can be expressed by: 

 𝐽𝐽 = �𝐑𝐑𝑠𝑠 − 𝐘𝐘��𝑇𝑇�𝐑𝐑𝑠𝑠 − 𝐘𝐘�� + ∆𝐔𝐔𝑇𝑇𝐑𝐑�∆𝐔𝐔, (19) 

where 𝐑𝐑𝑠𝑠 denotes a set-point signal, 𝐘𝐘� is the predicted output trajectory (predicted relative motion), 
∆𝐔𝐔 is trajectory of control increments to be calculated and 𝐑𝐑� is a weight matrix for the control 
increments. 
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 𝐱𝐱1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = [−18264 −24438 −326 −14 26 3]𝑇𝑇, meters, meters per second, (20) 

 𝐱𝐱2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = [6528 48102 301 18 −17 −3]𝑇𝑇, meters, meters per second, (21) 

 𝐱𝐱3𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = [−6633 −48191 167 −18 17 −1]𝑇𝑇, meters, meters per second. (22) 

It is assumed that an initial mass of each of the deputies is equal to 1500 kg, including 500 kg 
of the propellant. Specific impulse of the deputies’ thrusters was assumed as 400 s. 

An example of control history (for the deputy 0 case) is depicted in Fig. 3. Position trajectory 
for all the deputies is presented in Fig. 4-7 presents an example of relative velocity trajectory – 
case of deputy 0. Finally, Fig. 8 depicts a history of amount of fuel expelled by the deputy 0. 
 

 
Fig. 2. Operation diagram of the proposed algorithm 

 
The cost function, equipped with the output prediction system, given augmented estimate of the 

current state, formulated by taking into account of the set point and weights, is fed to the 
optimization algorithm together with constraints matrices. 

Although utilization of the nonlinear model leads to nonlinear, nonconvex optimization, 
treatments such as generation of the local linear models allowed for reducing of the optimization 
problem to a quadratic optimization procedure. A detailed description of the algorithm architecture 
and operation principles is presented in [1]. 
 
4. Simulation and Results 
 

The proposed control algorithm was applied to simulation of satellite constellation deployment 
and maintenance problem, which seems to be much more challenging than only maintenance 
problem. The constellation consisted of a mothership and three controlled spacecraft (deputies 0, 1 
and 2). Initial conditions for the constellation deployment and maintenance process are presented 
in Tab. 1, in a form of classical orbital elements in order to facilitate their interpretation. As can be 
seen, the constellation moves in a highly elliptical orbit. The initial conditions for deputy 0 
corresponds to state vector given by Equation 4-1, initial conditions of deputy 1 are given by 
Equation 4-2, while Equation 4-3 provides initial conditions of relative motion for deputy 2. The 
simulated process would last 30000 s (over 8 hour) in the real world. 
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Tab. 1. Initial conditions for the simulated process 

Orbit parameter Symbol Value for 
the mothership 

Value for 
deputy 0 

Value for 
deputy 1 

Value for 
deputy 2 Unit 

Semi-major axis a 25000 25000 25000 25000 km 

Eccentricity e 0.700 0.701 0.699 0.701 — 

Inclination i 30.00 30.02 29.98 29.99 ° 

Longitude of the 
ascending node Ω 45.0 45.0 45.0 45.0 ° 

Argument of 
periapsis ω 60.0 60.0 60.0 60.0 ° 

Mean anomaly at 
epoch 0 M0 350.00 350.02 350.01 349.99 ° 

 
Fig. 3. History of control for deputy 0 

5. Conclusion and future work 
 

The simulation results show that the presented algorithm is able to cope with the tasks of 
deployment, reorganization and maintenance of satellite constellation. Although a nonlinear model 
of relative, motion was employed as an internal model for the model predictive control algorithm, 
what leads to a nonconvex optimization, several treatments allowed for reducing of the 
optimization problem to a standard quadrating optimization problem. The algorithm enables to 
solve for quasi-optimal control trajectories, where the fuel consumption is minimized, what plays 
a crucial role in the space industry. As the simulation indicates, the proposed control algorithm 
allows for asymptotically stable control process even in the case where the constellation is moving 
in a highly elliptical orbit (eccentricity approximately 0.7).  
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Fig. 4. Relative position trajectory of deputy 0 

 

  
Fig. 5. Relative position trajectory of deputy 1 
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Fig. 6. Relative position trajectory of deputy 2 

 

 
Fig. 7. Relative velocity trajectory of deputy 0 
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Fig. 8. Fuel mass expelled by deputy 0 

 
In order to provide a complete and reliable control algorithm, able to safe constellation 

deployment and reorganization manoeuvres, next steps in this investigation should concern 
collision avoidance. We propose an approach commonly used in robotics: employment of a 
reference trajectory planner and application of the MPC algorithm proposed in this paper for 
controlling the relative motion of each deputy satellite according a planned reference trajectory. 
The planned reference trajectory could have a form of intermediate points, whereas the proposed 
MPC algorithm would find a quasi-optimal control strategy for steering the system between the 
planned points. Authors consider an application of genetic algorithm for the reference trajectory-
planning task, where the constraints implied by the collision avoidance problem can be 
implemented. Additionally, for safety reasons, a set of time-variant constraints on state would be 
imposed in the presented MPC algorithm. 
 
References 
 
[1] Felisiak, P., Control of spacecraft for rendezvous manoeuvre in an elliptical orbit, Wroclaw 

University of Science and Technology, Wroclaw, Poland 2016.  
[2] Hill, G. W., Researches in the lunar theory, American Journal of Mathematics, T. 1, No. 1, 

pp. 5-26, 1878.  
[3] Clohessy, W. H., Wiltshire, P. S., Terminal guidance system for satellite rendezvous, Journal 

of Aerospace Sciences, T. 27, No. 9, pp. 653-658, 1960.  
[4] Tschauner, J., Hempel, P., Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel, 

Astronautica Acta, T. 11, No. 2, pp. 104-109, 1965.  
[5] Schaub, H., Junkins, J. L., Analytical Mechanics of Space Systems, Reston, AIAA Education 

Series, Virginia, US 2003.  
[6] Curtis, H. D., Orbital Mechanics for Engineering Students, Oxford: Butterworth-Heinemann, 

2005.  
[7] Qin, S. J., Badgwell, T. A., A survey of industrial model predictive control technology, 

Control Engineering Practice, T. 11, No. 7, pp. 733-764, 2003.  
[8] Camacho, E. F., Bordons, C., Model Predictive Control, Springer, London 2004.  
[9] Xi, Y.-G., Li, D.-W., Lin, S., Model predictive control – status and challenges, Acta 

Automatica Sinica, T. 39, No. 3, pp. 22236, 2013.  
 

730




