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Abstract 

The paper presents a cross-sectional analysis of dynamics of rotating systems with different characteristics, 
starting from the search for solutions in an analytical way, and ending with the numerical attempt to verify the results. 
There is presented a problem of bending and torsional vibrations in rotational systems, using possibly the simplest 
model of the phenomenon. It is a heavy disk embedded on the deformable massless shaft. The rotor is symmetric and it 
is assumed that stiffness can be nonlinear. The analysis of vibrations occurring in rotors is made with the use of this 
model. This is followed by a preliminary discussion on the problem and the conclusions of the pilot studies. There are 
presented basic problems related to the phenomenon of lateral-torsional coupling in rotational systems with an 
emphasis on critical states. Formulation of the problem is the conclusion of preliminary part of the paper. Next, there 
are discussed the selected methods currently used to solve such problems, together with a discussion of their 
application in this case. In addition, there is discussed a problem of numerical or analytical character of obtained 
results and the range of using methods in modelling, designing and experimental studies. The next part of the paper 
focuses on the solution of the model presented in the introduction, using the following analytical or numerical 
methods: Krylov-Bogolubov, Adams and Runge-Kutta methods. There are presented assumptions, simplifications of 
the model, technical details of searching for solutions and the results together with a discussion of their correctness. 
The results, which were obtained from analysis, are polyharmonic. Due to this fact, the spectra of each solution were 
presented. These aspects are discussed in the context of the solving methods and motion analysis for rotor systems. 
The whole paper is summarized with a discussion of the results and their confrontation with reality. 

Keywords: rotational system, nonlinear differential system of equation, perturbation method, critical states, analytical 
solutions 

1. Introduction

The importance of nonlinear problems in the entire engineering and machine construction is 
increasing. Contemporary industry rarely allows for “constructional compromises” in the form 
of high values of safety factor or simplified design computation process, which lead to oversizing 
of a designed product. Complex computing models are used increasingly more often. The aim of 
this action is to create light, economical objects, which fulfil constructional assumptions in the 
way possibly nearest to the limitations. The products, which are designed in a way that the 
operation time exceeds the assumed durability, are inappropriate among the contemporary trends. 
In many cases, they will be classified as incorrect. At this point, it is important to mention the 
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example of big aircraft constructions, where the decrease of the mass of fuel together with its 
operation or crack propagation in sheathing and airfoil are taken into account. What is more 
important, the ready product is allowed for a flight with cracks initiation (if only its length is not 
smaller than the critical length!). Moreover, there is so much fuel that it is only enough to reach 
the flight destination [8-10]. 

Thus, the linear models of many phenomena, in many cases, become too less accurate although 
there is a clear transparency and a relatively easy way of seeking the solution. A considerable 
group of constructional problems requires considering the nonlinear aspects, although their 
influence on the system is not big [1]. 

That is why; using complex computing models (including nonlinear ones) becomes a norm. 
Nowadays, seeking solutions of such problems has considerably simplified because of intensive 
development of computer methods. Many implementations of various algorithms of seeking 
numerical solutions were developed. A perfect example of this is Finite element method, which in 
its various applications enables skipping the stage of mathematical modelling. The main problem 
of solutions found with numerical methods is their “numerical” form. The array of numbers 
(usually a big and multidimensional table) is the effect of computations. This array represents only 
one particular solution with the concrete parameters of the system. It means that any constructional 
change based on the results of the model will require its modification and recalculations. However, 
it is not certain that the results will be “better” (in a previously defined sense). It is not certain that 
the change of a given parameter will influence the solution. The results are very often obtained 
numerically and they are very illegible. What is more, defining the parameters, which are crucial 
for a discussed problem, requires many iterations. A vast number of people will claim, “there is a 
method in this craziness”. If the equations defining complicated mechanical problem (including 
nonlinear problems) do not have closed solutions, they must be sought numerically. Many people 
will be supporting the idea that it is a waste of time to analyse complex equations. They justify it 
with the fact that the numerical solution can be obtained without arduous transformations on 
illegible formulas [4-6]. 

At this point, the following question arises: Does the time spent on seeking the numerical 
solution does not exceed the time necessary to find the analytical solution (e.g. asymptotic or 
approximate)? Having proper skills and appropriate preparation (environments of symbolic 
computations appropriately programmed), it is possible to analyse complex systems of equation. 
What is more, the obtained results have the form of compact formulas Such a solution makes it 
possible to scale the results for various values of parameters and to assess their importance. In this 
context, the approximate result (analytical) is better than the precise solution (numerical). 
Obviously, it is not appropriate to marginalize the meaning of numerical methods. They are 
a perfect method of checking the accuracy of computations. Moreover, they serve as a perfect tool 
for finding precise values of sought solutions for previously defined parameters of a product. It is 
important to be aware of the fact that a complete negligence of using analytical methods for 
numerical ones in the designing process is not advisable [7, 11].  
 
2. Model 
 

The fundamental problem is the choice of the model for the purposes of a given analysis. 
Unfortunately, in most cases it does not mean that this problem is simple and unequivocal. The 
model can be treated as a kind of representation of the reality in the language of a given domain 
(mechanics, electrotechnology, thermodynamics, etc.) That is why; its form depends on the shape 
of problems. Additionally, the assumed level of accuracy has a big influence on the final form of 
the model. The level of accuracy can be defined as a collection of phenomena, which were 
considered to be vital in the modelling process [3]. 

Obviously, the increase of model accuracy does not lead to proportional increase of accuracy 
of the results. What is more, it happens that the time spent on improving the model and finding its 
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solutions does not correspond to obtained results. That is why, it is necessary to be careful during 
this process so as not to start describing the reality too precisely. In this case finding the precise 
model and its solution could be the problem. 

In most cases of the analysis of different type of vibrations, practice shows that it is worth 
using method of successive approximations. In the beginning, simple models are used so that 
together with the successive solving success the discussed problem is made more detailed. Such an 
approach has two basic advantages:  
– it allows to check which of the phenomena existing in a given system are basic, and which of 

them are of less importance, 
– it allows for seeking the solutions for a given problem on the given level of accuracy because 

of the familiarity with the solution of the previous and simplified problem. 
Thus, in case of the analysis of bending and torsional oscillations existing in rotors, it is worth 

to start the discussion with the simplest model in the form presented in Fig. 1.  
 

 
Fig. 1. Model of the shaft 

 
This system is represented by the inert disc with a mass of 𝑚𝑚 and a moment of inertia 𝐼𝐼 fixed 

eccentrically on the elastic shaft within 𝑒𝑒 from the rotation axis. The system presented in figure (1) 
(physical model) can be described as second order nonlinear system of differential equation 
(mathematical model) in the form of:  

 𝑚𝑚 ⋅ ℎ̈ − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ sin𝜑𝜑 ⋅ �̈�𝜑 − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ cos𝜑𝜑 ⋅ �̇�𝜑2 + 𝑘𝑘(ℎ) ⋅ ℎ = 0, (1) 

 𝑚𝑚 ⋅ �̈�𝑣 + 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ cos𝜑𝜑 ⋅ �̈�𝜑 − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ sin𝜑𝜑 ⋅ �̇�𝜑2 + 𝑘𝑘(𝑣𝑣) ⋅ 𝑣𝑣 = 0, (2) 

 (𝐼𝐼 + 𝑚𝑚 ⋅ 𝑒𝑒2) ⋅ �̈�𝜑 − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ ℎ̈ ⋅ sin𝜑𝜑 + 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ �̈�𝑣 ⋅ cos𝜑𝜑 = 𝛥𝛥𝛥𝛥(𝑡𝑡). (3) 
where: 
ℎ(𝑡𝑡) – horizontal displacement of shaft axis at the point of disc mounting, 
𝑣𝑣(𝑡𝑡) – vertical displacement of shaft axis at the point of disc mounting, 
𝜑𝜑(𝑡𝑡) – angular displacement of (rotation) shaft. 

Finding the equation system (1-3) is possible with a direct implementation of the second 
Newton’s law of dynamics or any formalism of analytical mechanics e.g. Lagrange equations of II 
kind or D’Alembert’s principle. 

Before solving the dynamic system (1-3) it is worth to think about possible simplifications. 
Presentation of angular shaft displacement in the following form 𝜑𝜑(𝑡𝑡) is justified because the 
vibrations in rotor systems should be treated as side effects: 

 𝜑𝜑(𝑡𝑡) = 𝜓𝜓(𝑡𝑡) + 𝜃𝜃(𝑡𝑡), (4) 
where: 
𝜓𝜓(𝑡𝑡) – basic motion, 
𝜃𝜃(𝑡𝑡) – motion disturbance. 

Linear-elastic model of deformable crankshaft. 
Particular elements of expression (4) can be interpreted as follows. Function 𝜓𝜓(𝑡𝑡) presents the 

general form of rotor motion and it should be treated as unknown (expected motion of rotor). 
Whereas mapping 𝜓𝜓(𝑡𝑡) represents the deviation of rotor motion from the expected value 𝜓𝜓(𝑡𝑡). 
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Furthermore, it was assumed that the function of disturbance is periodic. However, this assumption 
does not have to be obligatory. That is why; the function 𝜃𝜃(𝑡𝑡) presents the torsional vibrations of 
shaft. These vibrations are at the same time the disturbances of the basic motion 𝜓𝜓(𝑡𝑡).  

It is unacceptable that the values of disturbance and its velocity were too high. It is connected 
with the operation. The system where the changes of velocity would be big, in most technical 
cases would not be able to fulfill the assumed expectations. That is why, oscillation of angular and 
velocity displacement of shaft should fulfill the following conditions: 

𝜃𝜃0 ≤ 𝜃𝜃dop = 𝜋𝜋
𝑚𝑚dop

, (5) 

𝛺𝛺𝜃𝜃 ≤ 𝜅𝜅dop ⋅ 𝛺𝛺, (6) 

where: 
𝜃𝜃dop – maximum acceptable amplitude of disturbance of angular displacement,
𝑚𝑚dop  – multiplicity of angle 𝜃𝜃dop in angle 𝜋𝜋, 𝑚𝑚dop = 𝜋𝜋 𝜃𝜃dop⁄ ,
𝜅𝜅dop   – maximum acceptable quotient of amplitude of disturbance velocity and 

angular velocity of the shaft,
𝜃𝜃0 = sup|𝜃𝜃(𝑡𝑡)| – maximum amplitude of disturbance of angular displacement,  
𝛺𝛺 = sup��̇�𝜓(𝑡𝑡)� – maximum velocity of basic motion of the shaft,  
𝛺𝛺0 = sup��̇�𝜃(𝑡𝑡)� – maximum amplitude of velocity disturbance of angular displacement. 

In addition, it can be assumed that the periodic function 𝜃𝜃(𝑡𝑡) fulfills the Dirichlet’s conditions. 
That means it can be expanded to Fourier series. All mechanical systems fulfil this assumption, 
and only some untypical cases, which do not qualify for this group, are beyond the area of objects, 
which are the subject of these considerations. No matter, what the character of function is 𝜓𝜓(𝑡𝑡) 
and 𝜃𝜃(𝑡𝑡), angular velocity and acceleration in the analyzed case are as follows: 

�̇�𝜑(𝑡𝑡) = �̇�𝜓(𝑡𝑡) + �̇�𝜃(𝑡𝑡), (7) 

�̈�𝜑(𝑡𝑡) = �̈�𝜓(𝑡𝑡) + �̈�𝜃(𝑡𝑡). (8) 

Using the assumption of small vibrations, (formula (5)) further simplifications can be done. 
The expressions including terms proportional to 𝜃𝜃(𝑡𝑡) (angular displacement) can be neglected. It 
gives governing equations as follows: 

𝑚𝑚 ⋅ ℎ̈ − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ sin𝜓𝜓(𝑡𝑡) ⋅ ��̈�𝜓(𝑡𝑡) + �̈�𝜃(𝑡𝑡)� − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ cos𝜓𝜓(𝑡𝑡) ⋅ �̇�𝜓2(𝑡𝑡) + 𝑘𝑘(ℎ) ⋅ ℎ = 0, (9) 

𝑚𝑚 ⋅ �̈�𝑣 + 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ cos𝜓𝜓(𝑡𝑡) ⋅ ��̈�𝜓(𝑡𝑡) + �̈�𝜃(𝑡𝑡)� − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ sin𝜓𝜓(𝑡𝑡) ⋅ �̇�𝜓2(𝑡𝑡) + 𝑘𝑘(𝑣𝑣) ⋅ 𝑣𝑣 = 0, (10) 

(𝐼𝐼 + 𝑚𝑚 ⋅ 𝑒𝑒2) ⋅ ��̈�𝜓(𝑡𝑡) + �̈�𝜃(𝑡𝑡)� − 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ ℎ̈ ⋅ sin𝜓𝜓(𝑡𝑡) + 𝑚𝑚 ⋅ 𝑒𝑒 ⋅ �̈�𝑣 ⋅ cos𝜓𝜓(𝑡𝑡) = 𝛥𝛥𝛥𝛥(𝑡𝑡). (11) 

3. Solution

The solution of the preliminary problem for system of equations (9-11) is possible with the use 
of a few methods. The methods can be divided into two groups: 
– analytical methods,
– numerical methods.

Benefits and problems resulting from using the above methods were generally explained in the
introduction. The problem of choice of one of the group comes down to answers to the following 
questions: What kind of solution is necessary for a given problem? What could be the results used 
for? In most design processes using closed formulas has more benefits than using numerical data. 
Therefore, using numerical methods is less important in relation to the analytical approach. 
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In the group of analytical methods, the following division can be made: 
– precise methods,
– approximate methods:
– perturbation (e.g. Krylov–Bogolubov,)
– variational (e.g. Galerkin).

Unfortunately, the precise methods should be excluded from the methods, which are possible
to use in the engineering. It should be done because of considerable difficulties connected with 
algorithmisation of the process of solving the problem. That is why Krylov–Bogolubov method 
was proposed to be used. This method is one of the perturbation methods (methods of small 
parameter) and it is based on the assumption of a special form of functions, which are expected to 
be a desired solution. This method assumes that [1]: 

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖(𝑡𝑡) ⋅ cos�𝜓𝜓𝑖𝑖(𝑡𝑡)� + ∑ 𝜀𝜀𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖,𝑘𝑘∞
𝑘𝑘=1 , (12) 

�̇�𝑎𝑖𝑖(𝑡𝑡) = ∑ 𝜀𝜀𝑘𝑘 ⋅ 𝐴𝐴𝑖𝑖,𝑘𝑘∞
𝑘𝑘=1 , (13) 

�̇�𝜓𝑖𝑖(𝑡𝑡) = 𝜔𝜔0𝑖𝑖 + ∑ 𝜀𝜀𝑘𝑘 ⋅ 𝐵𝐵𝑖𝑖,𝑘𝑘∞
𝑘𝑘=1 , (14) 

where: 
𝜀𝜀 – small parameter, 
𝑎𝑎𝑖𝑖(𝑡𝑡) – instantaneous amplitude, 
𝜓𝜓𝑖𝑖(𝑡𝑡) – instantaneous phase, 
𝑋𝑋𝑖𝑖,𝑘𝑘 – function of approximation of k order of expected solution, 
𝐴𝐴𝑖𝑖,𝑘𝑘 – function of approximation of k order of instantaneous amplitude. 
𝐵𝐵𝑖𝑖,𝑘𝑘 – function of approximation of k order of instantaneous frequency. 

While substituting dependencies (12-14) into system of equation (9-11) the recurrence system 
of equation is obtained. Based on this system it is possible to appoint unknown quantity, and as a 
result finding the approximate solution in the form of formula (12). 

The applied method occurred to be quite complex in the perspective of calculus. That is why, 
the software application − Computer Algebra System, which performs symbolic computation, was 
used. Software Maxima was used mainly because of great computing capabilities. Another reason 
for using this software was the fact that it is free (this software is distributed under GNU/GPL 
license). In order to solve the problem the whole set of procedures was created. These procedures 
were creating, transforming and solving recurrence system of equation, which result from 
application of Krylov-Bogolubov method. The procedures were created in such a way so that they 
could be used in case of other kinds of problems. The solution found with the help of software 
MAXIMA has the following form: 

ℎ(𝑡𝑡) = 𝑎𝑎ℎ(𝑡𝑡) ⋅ cos�𝜓𝜓ℎ(𝑡𝑡)� − 𝛺𝛺2

𝛺𝛺2−𝜔𝜔ℎ
2 ⋅ cos�𝜓𝜓𝑤𝑤(𝑡𝑡)� +

+𝑒𝑒 ⋅ 𝜔𝜔𝜃𝜃
2⋅𝑎𝑎𝜃𝜃

2⋅�(𝛺𝛺−𝜔𝜔𝜃𝜃)2−𝜔𝜔ℎ
2�
⋅ sin�𝜓𝜓𝑤𝑤(𝑡𝑡) − 𝜓𝜓𝜃𝜃(𝑡𝑡)�, (15)

𝑣𝑣(𝑡𝑡) = 𝑎𝑎𝑣𝑣(𝑡𝑡) ⋅ cos�𝜓𝜓𝑣𝑣(𝑡𝑡)� − 𝛺𝛺2

𝛺𝛺2−𝜔𝜔𝑣𝑣
2 ⋅ sin�𝜓𝜓𝑤𝑤(𝑡𝑡)� +

−𝑒𝑒 ⋅ 𝜔𝜔𝜃𝜃
2⋅𝑎𝑎𝜃𝜃

2⋅�(𝛺𝛺−𝜔𝜔𝜃𝜃)2−𝜔𝜔𝑣𝑣
2�
⋅ sin�𝜓𝜓𝑤𝑤(𝑡𝑡) − 𝜓𝜓𝜃𝜃(𝑡𝑡)�, (16) 

𝜃𝜃(𝑡𝑡) = 𝑎𝑎𝜃𝜃(𝑡𝑡) ⋅ cos�𝜓𝜓𝜃𝜃(𝑡𝑡)� + 𝑒𝑒 ⋅ 𝑚𝑚⋅𝑎𝑎𝑣𝑣
2⋅𝐼𝐼⋅�(𝛺𝛺−𝜔𝜔𝑣𝑣)2−𝜔𝜔𝜃𝜃

2�
⋅ cos�𝜓𝜓𝑤𝑤(𝑡𝑡) − 𝜓𝜓𝑣𝑣(𝑡𝑡)� +

−𝑒𝑒 ⋅ 𝑚𝑚⋅𝑎𝑎ℎ
2⋅𝐼𝐼⋅�(𝛺𝛺−𝜔𝜔ℎ)2−𝜔𝜔𝜃𝜃

2�
⋅ sin�𝜓𝜓𝑤𝑤(𝑡𝑡) − 𝜓𝜓ℎ(𝑡𝑡)�. (17) 
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Obviously instantaneous phases are (with appropriately chosen initial conditions): 

𝜓𝜓𝑤𝑤(𝑡𝑡) = 𝛺𝛺 ⋅ 𝑡𝑡, 𝜓𝜓ℎ(𝑡𝑡) = 𝜔𝜔ℎ ⋅ 𝑡𝑡, 𝜓𝜓𝑣𝑣(𝑡𝑡) = 𝜔𝜔𝑣𝑣 ⋅ 𝑡𝑡, 𝜓𝜓𝜃𝜃(𝑡𝑡) = 𝜔𝜔𝜃𝜃 ⋅ 𝑡𝑡. (18) 

Finally, it can be written that solution (15-17) has the following form: 

ℎ(𝑡𝑡) = 𝑎𝑎ℎ(𝑡𝑡) ⋅ cos(𝜔𝜔ℎ ⋅ 𝑡𝑡) −
𝛺𝛺2

𝛺𝛺2−𝜔𝜔ℎ
2 ⋅ cos(𝛺𝛺 ⋅ 𝑡𝑡) + 𝑒𝑒 ⋅ 𝜔𝜔𝜃𝜃

2⋅𝑎𝑎𝜃𝜃
2⋅�(𝛺𝛺−𝜔𝜔𝜃𝜃)2−𝜔𝜔ℎ

2�
⋅ sin(𝛺𝛺 ⋅ 𝑡𝑡 − 𝜔𝜔𝜃𝜃 ⋅ 𝑡𝑡), (19) 

𝑣𝑣(𝑡𝑡) = 𝑎𝑎𝑣𝑣(𝑡𝑡) ⋅ cos(𝜔𝜔𝑣𝑣 ⋅ 𝑡𝑡) −
𝛺𝛺2

𝛺𝛺2−𝜔𝜔𝑣𝑣
2 ⋅ sin(𝛺𝛺 ⋅ 𝑡𝑡) − 𝑒𝑒 ⋅ 𝜔𝜔𝜃𝜃

2⋅𝑎𝑎𝜃𝜃
2⋅�(𝛺𝛺−𝜔𝜔𝜃𝜃)2−𝜔𝜔𝑣𝑣

2�
⋅ sin(𝛺𝛺 ⋅ 𝑡𝑡 − 𝜔𝜔𝜃𝜃 ⋅ 𝑡𝑡), (20) 

𝜃𝜃(𝑡𝑡) = 𝑎𝑎𝜃𝜃(𝑡𝑡) ⋅ cos(𝜔𝜔𝜃𝜃 ⋅ 𝑡𝑡) + 𝑒𝑒 ⋅ 𝑚𝑚⋅𝑎𝑎𝑣𝑣
2⋅𝐼𝐼⋅�(𝛺𝛺−𝜔𝜔𝑣𝑣)2−𝜔𝜔𝜃𝜃

2�
⋅ cos(𝛺𝛺 ⋅ 𝑡𝑡 − 𝜔𝜔𝑣𝑣 ⋅ 𝑡𝑡) +

−𝑒𝑒 ⋅ 𝑚𝑚⋅𝑎𝑎ℎ
2⋅𝐼𝐼⋅�(𝛺𝛺−𝜔𝜔ℎ)2−𝜔𝜔𝜃𝜃

2�
⋅ sin(𝛺𝛺 ⋅ 𝑡𝑡 − 𝜔𝜔ℎ ⋅ 𝑡𝑡). (21)

As dependencies (19-21) show, transverse vibrations of the analysed rotor can have the 
following frequencies: 

𝜔𝜔𝑣𝑣 = 𝜔𝜔𝑣𝑣 = 𝜔𝜔𝑜𝑜, 𝛺𝛺, 𝛺𝛺 − 𝜔𝜔𝜃𝜃, 𝛺𝛺 + 𝜔𝜔𝜃𝜃. (22) 
That is why the enumerated frequencies should be present in the spectrum of transverse 

vibrations. 

4. Numerical solution

In order to check the accuracy of solution (19-21) the numerical solution was additionally 
found. Nowadays, numerical solution can be found with any accuracy. Therefore, the 
confrontation of the results obtained numerically and theoretically could give a lot of information 
about the correctness of assumptions and the relevance of the assumed approximation etc. 
Numerical computations were done in the environment of Scilab. 

It is expected that frequencies (22) will occur in the system. The presence of these frequencies 
is the evidence of accuracy of the implemented model. Fig. 2 presents the amplitude spectra of 
vibrations obtained simultaneously for different frequencies. 

Fig. 2. Selected amplitude spectra of transverse vibrations of shaft 

Figure 2 shows excitation frequencies, free vibrations and the difference of excitation 
frequency and torsional vibrations. The second spectrum in figure (2) presents the frequency of 
free vibration of the system 3 Hz (the highest spectrum bar) and the frequency of excitation 20 Hz 
and frequency 15 Hz and 25 Hz which are the sum and difference of excitation frequency and the 
frequency of torsional vibrations of the system (this frequency was 5 Hz) [2, 3]. 

The results of solutions (19-21) are compatible with the presented numerical solution, which 
increases the trust in the chosen analytical method. It is also promising as for the future application 
of this method of seeking the solutions. 
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5. Conclusion

During the work over the design project the series of theoretical and experimental research was 
done. Its aim was to extend the knowledge about the dynamics of rotors and working out the 
analytical models, which include more dynamic effects than usually used model in the form of 
harmonic oscillator (it is a very big simplification). In relation to this research, it was possible to 
find less radically simplified model. The article presents the simplifying assumption and necessary 
substitutions, which are necessary in order to obtain the analysed mathematical model. 

Based on mathematical model, the analytical and numerical solutions were found. The 
compatibility of the results of Krylov-Bogolubov method and numerical simulations were 
presented in the adequate chapter. It allows using this method effectively in order to analyse the 
dynamics of certain class of rotor systems. 
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