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Abstract 

The numerous logistics problems occurring in power train and transport industry lead to wear of vehicles and 
trains as well as the road or tracks length. The choice of the proper transport requires selecting the kind of the 
optimum length of the way. For facilities for transport of bulk commodity, very important meaning has the distance 
between the place of outgoing (x) and delivery point (y). Such problem will be referring for the one, two and three 
spaces in the case of land transport for road and rail vehicles as well as sea and air transport for ships and airplane. 

It is desired that the transport from outgoing point (x) to delivery place (y) ought to be travelled on the shortest 
way in the presenting geometry sense. In transport, logistics denotes it the least distance between the place of the 
drive beginning (outgoing) and the place of drive end (delivering place). It is evident that the shortest distance 
between two points is always if we define this distance in Euclidean geometry sense because Euclidean metric 
determines the shortest distance between two points. In various transport problems the shortest distance in Euclidean 
sense, between two various places is not realistic and not possible. Therefore for transport vehicles exists many 
possibilities of various kinds of access road in Euclidean and non- Euclidean geometry. After Authors, suggestion very 
interesting is to find the optimum way or optimum track between the trip origin and delivery place.  

Such problem demands the more and more information referring the describing the tracks geometry using metric 
space theory. In this article, especially the non-Euclidean modulus Taxi–Car metrics is considered. Presented metric 
spaces and their properties are needed and applied in practical transport problems occurring among other in 
assembly rooms where the way of intelligent shortest truck must be considered. Moreover, in this article the various 
communication ways will be presented and will be suggested an algorithm construction of the optimum distance 
problem solutions in non-Euclidean geometry presenting the equivalent and simultaneously most simple 
communication tracks. 

Keywords: transport logistics, access road, metric spaces, optimization, non-Euclidean geometry, transport 
engineering Applications 

1. Introduction

The metric space tools are always determine and indicate the choice of distances for many
transport problems connected with the road communication network for the moving of vehicles 
along the concrete track [1-3]. Moreover, the knowledge of the description of the anticipated 
traffic functioning along the road net is very important during the design of the optimum shape of 
the various nets of the communication network. The example of configuration of roads and streets 
is presented in Fig. 1. 

Fig. 1. The arrangement of London subway lines 
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2. The article tasks 
 
The aim of this article is:  

1. Definition and determination of the non- Euclidean metric space and its properties regard to the 
distances occurring in road, sea and air transport and according to the kind of the vehicle and 
kind of the transport way.  

2. Presentation of the Euclidean and non-Euclidean metric transport in one-, two- and three-
dimensional spaces.  

3. Illustration and optimization aspects of the transport metric space defining the same distances 
for the various origin places to the same delivery point.  

4. Application of obtained results in transport engineering problems. 
 

3. The definition of metric transport 
 
Metric space is defined by means of an arbitrary set X, where for each pair of elements or 

points or places (x,y)∈X where x denotes outgoing and y-delivery place and both belong to set X 
is determined non-negative metric transport function ρ(x,y) with real values is called as metric 
transport or conventional distance between two places x and y. Metric transport function ρ(x,y) is 
defined in following form: 
 1o { ρ(x,y)=0 }⇔ x≡y, for x,y∈X,  (1) 

 2o ρ(x,y)= ρ(y,x), for x,y∈X,  (2) 

 3o ρ(x,y)≤ ρ(x,z) +ρ(z,y) for x.y,z∈X .  (3) 
 

The first axiom (1) shows, that distance in metric sense between two the same places is always 
zero. Interpretation of second axiom (2) assumes, that distance in metric transport sense between 
two various places x and y where x,y∈X, x≠y has the same value as the distance between place y 
and x. Hence, the distance from outgoing place to the delivery place is the same as distance from 
delivery to outgoing place. Interpretation of third axiom (3) denotes a triangle inequality and 
shows, that in each metric transport space presenting the distances, the sum of two arbitrary sides 
of triangle is not smaller than the third side of the triangle. It denotes, that for each various places 
x,y,z the distance between two arbitrary places for example between x and y, is always smaller or 
equal to the sum of distances between places (x,z) and (y,z). 
 
4. Classical Euclidean metric transport space 

 
Classical Euclidean metric transport space determines always the least distance between 

outgoing x and delivery y place (point). 
The classical Euclidean metric function, in one-dimensional (1D) space satisfies axioms (1), 

(2), (3), determines distance between outgoing place x(x1) and delivery place y(y1) and it can be 
defined in following form [4]: 

 ρ1(x,y) = x−y. (4)  
Above distance illustrates Fig. 2. 
 

 

Fig. 2. The Euclidean metric transport distance between outgoing place x and delivery place y, defined in the one 
dimensional space D1 

x y X 
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The classical Euclidean metric function in two dimensional (2D) space satisfies axioms (1), 
(2), (3), determines distance between outgoing place x(x1, x2) and delivery place y(y1, y2) and can 
be defined in following form [4]: 

 ρ2(x,y) =[(x1−y1)2 +(x2−y2)2 ]0.5. (5) 
Above distance illustrates Fig. 3. 

 

 
Fig. 3. The Euclidean metric transport distance between outgoing place x(x1,x2) and delivery place y(y1,y2), defined 

in the two dimensional space D2 
 

The classical Euclidean metric function in three dimensional (3D) space satisfies axioms 
(1),(2),(3), determines distance between outgoing place x(x1, x2, x3) and delivery place y(y1, y2, y2) 
and can be defined in following form [6]: 

 ρ3(x,y) =[(x1−y1)2 +(x2−y2)2 +(x3−y3)2]0.5. (6) 
Above distance illustrates Fig. 4. 

 

 

Fig. 4. The Euclidean metric transport distance between outgoing place x(x1,x2, x3) and delivery place y(y1,y2,y3), 
defined in the three dimensional space D3  

Presented Euclidean metric transport space in Fig. 3, 4 determine the least distance between 
outgoing x and delivery y place in sea and air transport. 
 
5. Comparisons between Euclidean and non-Euclidean metric transport 

 
Figure 5 and 6 shows comparisons of distances in D2 between places A, B, C as apexes of 

triangles in classical Euclidean and non-Euclidean metric transport spaces. Fig. 5a shows polygon 
ADBECFA, as a triangle in non-Euclidean metric transport space where distance between A and B 
leads only through, distance between B and C leads only through place E.  

Figure 6 on the right hand shows polygon a triangle ABC in non-Euclidean metric transport 
space where distances between apex places A, B, C lead only through the indicated bows. 

The D2 metric transport spaces presented in Fig. 5, 6 have applications in road transport. 
Figure 7 shows the distances described by the non-Euclidean metric transport. The outgoing 

and delivery places, P, S, Q are lying on the Earth Ellipsoid and are to lie thousand kilometres 
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away from one other. The shortest distance between places P, Q, R is not rectilinear only 
curvilinear taking into account the Earth Ellipsoid curvature. The shortest rectilinear way- distance 
between places P, Q, R we have in Euclidean metric transport space, which is attainable only in air 
transport between outgoing and delivery places. Fig. 7 illustrates the distances between apexes of 
spherical-ellipsoidal triangle in non-Euclidean metric transport space [1]. 

 

 
Fig. 5. Triangles in transport metric space D2: a) On the left- the Euclidean triangle with apexes A, B, C in the 

classical Euclidean metric transport presents way from A direct to B or through the point C; b) On the right-
the polygon ADBECF as the triangle in non-Euclidean metric transport space, where way from A to B leads 
only through the point D 

 

 
  a) b) 
Fig. 6. Triangles in transport metric space D2: a) On the left- the Euclidean triangle with apexes A, B, C in the 

classical Euclidean metric transport; b) On the right-the triangle ABC in non-Euclidean metric transport 
space, where distance from A to B leads only through the bow way, similarly distance from B to C leads only 
through the bow 

 

 
 

Fig. 7. Elliptical triangle with apex PQR lying on the Earth Ellipsoid as a non-Euclidean metric road transport 
space: a) triangle on the Earth Ellipsoid, b) approximation of the elliptical triangle, c) a view of elliptical 
triangle reduced to the plane 
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Distance differences between roadway on the Earth surface and airway are presented in Fig. 8. 
 

 
Fig. 8. Differences between metric transport road distance PQ on the Earth surface and metric transport air distance 

for the same places P and Q 
 

6. Modular metric Taxi-Car 
 
Americans to give the name Taxi-Car for the non-classical non-Euclidean, modular metric 

transport space, because the roads of big American towns and speed-ways erected in XIX century 
from outset on, had often the geometry of regular mutually perpendicular i.e. intersected at right 
angle straight lines, determining and remaining inside buildings or afforested surfaces of the 
rectangular shapes [9]. 

Hence, from the outgoing place (x) to the delivering place (y) we cannot to arrive at shortest 
distance only accordingly with the road or way architecture. 

The non-classical, non- Euclidean, modular (Taxi-Car) metric function in three dimensional 
(2D) space satisfies axioms (1), (2), (3), determines distance between outgoing place x(x1, x2) and 
delivery place y(y1, y2) and can be defined in following form [4]: 

 ρ4(x,y) =  x1−y1 +  x2−y2. (7) 
Above distance illustrates Fig. 9. 

 
Fig. 9. The non-Euclidean modular (Taxi Car) metric transport distance between outgoing place x(x1,x2) and delivery 

place y(y1,y2), defined in the two dimensional space D2: X=α1×α2 
 

The non-classical non-Euclidean, modular (Taxi-Car) metric function in three dimensional 
(3D) space satisfies axioms (1), (2), (3), determines distance between outgoing place x(x1,x2,x3) 
and delivery place y(y1,y2,y2) and can be defined in following form [6]: 

 ρ5(x,y) =  x1−y1 +  x2−y2 +  x3−y3. (8) 
Above distance illustrates Fig. 10. 
Presented on the Fig. 10 the distance in modular (Taxi-Car) metric transport, has the 

application for the optimum distance determination for the vertical and horizontal route of 
intelligent, self-propelled load-transport trolleys occurring and working in Federal Mogul bearing 
factory assembly rooms in Wiesbaden (Germany) and in Otto Bock European Factory of 
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Endoprosthesis in Dudenstadt (Germany) [10, 11]. 
 

 
 

Fig. 10. The non-Euclidean modular (Taxi Car) metric transport distance between outgoing place x(x1,x2, x3) and 
delivery place y(y1,y2,y3), defined in the two dimensional space D3: X=α1×α2×α3 

 
7. The first result 

 
At first, we consider various ways from fixed outgoing place x(x1,x2) to the fixed delivered 

place y(y1,y2) for modular (Taxi Car) metric transport 2D space. This example is illustrated on the 
Fig. 11. 
Example 1. 

Indicate various ways between two fixed places in x(x1,x2) and y(y1,y2) in 2D modular metric 
transport.  
Solution of Example 1 

In modular metric transport D2 space, Fig. 11 shows four various ways between outgoing place 
x(x1,x2) and destination place y(y1,y2) namely: xAy, xMBCDy, xLEFy, xGHJKy. 
 

 
Fig. 11. Various ways with the same length in modular metric transport space D2 between two fixed places x(x1,x2) 

and y(y1,y2). 
 

Abovementioned ways have the same distances. 
 
8. The second result 

 
Now for modular (Taxi Car) metric transport 2D space, we consider set of various outgoing 

points )x,x(x )n(
2

)n(
1

)n(  for n=1, 2, ... with the same distance from the fixed delivered point (place) 
y(y1,y2). This example is illustrated on the Fig. 12. 
Example 2. 

Indicate various places )x,x(x )n(
2

)n(
1

)n(  for n=1, 2, .... with the same distance from fixed 
delivered place y(y1,y2) in 2D modular metric transport.  
Solution of Example 2 

The places (points) )x,x(x )n(
2

)n(
1

)n(  for n=1,2,.... with the same distance from fixed delivered 
place y(y1,y2) create the circle presented in Fig. 12 for modular metric transport D2 space. 

The radius of the circle in modular space (square in Euclidean space) presented in Fig. 12 
equals WC. Distance between each outgoing points lying on the circle circuit from the circle 
centre i.e. delivering point is equal to the radius. For example distance from outgoing point A to 
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the delivering point C=(y) equals AB+BC =WC. Distance from outgoing point H to the delivering 
point C=(y) equals HG+GC =WC. 

 

 
Fig. 12. Delivered point C= y(y1,y2) as the centre of the circle in modular metric transport space 2D 

 
Applications  

The shortest distances determination for the horizontal route 2D of intelligent, self-propelled 
load-transport trolleys has applications in Federal Mogul bearing factory assembly rooms. Storage 
yard of products in point y (centre of the circle) is supplied from the various places lying on the 
circle circuit with the same distance from y. 
 
9. The third result 

 
Now for modular (Taxi Car) metric transport 3D space, we consider set of various outgoing 

points )x,x,x(x )n(
3

)n(
2

)n(
1

)n(  for n=1, 2, ... with the same distance from the fixed delivered point 
(place) y(y1,y2,y3). This example is illustrated on the Fig. 13. 

 

a)  b)  
Fig. 13. Delivered point C= y(y1,y2,y2) as the centre in modular metric transport space 3D: a) outgoing points x: 

A, W, S, G, Q,... lying on the hemisphere surface in modular metric space (Pyramid surface in Euclidean 
metric) have the same distance from the delivering point y; b) sphere in modular metric space (two Pyramids 
in Euclidean metric) 

 
Example 3. 

Indicate various places )x,x,x(x )n(
3

)n(
2

)n(
1

)n(  for n=1,2,... with the same distance from fixed 
delivered place y(y1,y2,y3) in 3D modular metric transport.  
Solution of Example 3 

The places (points) )x,x,x(x )n(
3

)n(
2

)n(
1

)n(  for n=1,2,... with the same distance from fixed 
delivered place y(y1,y2,y3) create the hemisphere presented in Fig. 13 for modular metric transport 
D3 space( Pyramid in Euclidean metric space). 

The radius of the hemisphere in modular space (pyramid in Euclidean space) presented in 
Fig. 13 equals WC= .2/a . Distance between each outgoing points lying on the hemisphere from the 
hemisphere centre i.e. delivering point is equal to the radius of hemisphere. For example distance 

A 

B 

C 

 
H 

G 

W 

AB+BC=HG+GC=WC 

Radius of the 
circle in 
modular 
metric  
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from outgoing point A to the delivering point C=(y) equals AB+BD+DC =WC. Distance from 
outgoing point S to the delivering point C=(y) equals SR+RC =WC. 
Applications  

The shortest distances determination for the vertical and horizontal route 3D of intelligent, self-
propelled load-transport trolleys has applications in Federal Mogul bearing factory assembly 
rooms. Storage yard of products in point y(centre of the hemisphere) is supplied along the same 
distance from y by the transport trolleys from the various places lying on the hemisphere surface. 
Remark 

The passageways in Egyptian Pyramids Fig. 14 from the external pyramid surface to the 
pyramid centre have the same length and modular metric architecture. 

 

 
Fig. 14. Egyptian Pyramids 

 
10. Conclusions 
 
1. On the ground of illustrations presented in Fig. 10, 11 follows, that arbitrary various ways 

between outgoing and delivering places defined in Taxi-Car modulus metric transport 2D or 
3D space have the same length.  

2. On the ground of illustrations presented in Fig. 12, 13 follows, that in Taxi-Car modulus metric 
transport 2D or 3D space we have infinite many various ways with the same length from the 
various arbitrary outgoing places to the fixed delivering place. 

3. Presented results enable to find the optimum localization of places for storage yard (y) of 
products, which are supplied from the various places (outgoing points), to be the same distance 
away from storage yard places and lying on the factory assembly rooms.  
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