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Abstract 

In real systems are non-linear mathematical description. The exact solution can not be determined, and then look 
for approximate methods. Important is the type of nonlinearity, solutions and error method approximation. 
Linearization is an essential part of creating a model of the selected process. Ship resistance is a function of power 
with exponent two and higher. Model motion of the ship must have a solution in terms of maneuverability speed and 
speed of the sea. The solution must be well reproduce the actual path of the transition and the transition time of the 
ship. Nonlinear solution method determines the accuracy of the answers. Has presented the revised approach to solve 
the nonlinear differential equation of parabolic function. Linearization has been made in the selected range, and not 
where you want it to work and solve the error estimate. Range of solutions selected by external priorities adopted. 
Before the solution is estimated response error. The error value determines whether the selected interval will apply. If 
the problem solution is unacceptable, it will increase the accuracy of the result of the narrow scope of the work. The 
new scope of work should also be reassessed a solution error. This type of approach correlates with fuzzy logic, where 
we use the value of the Boolean variable with the function of belonging. The combination of classical methods of 
solving differential equations of the theory of fuzzy sets can bring new benefits. Such a solution must have the function 
of the accuracy of the answers. The linearization method meets this requirement. 
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Introduction  

The effect of the resistance occurs very common in the technique. We know the resistance of 
electrical, hydraulic, pneumatic, mechanical and others. Each of the resistances may be linear, 
parabolic or any exponent. For example, a ship on the water resistance describes the parabolic 
function, but depending on sea conditions, this function may be higher or lower exponent. As the 
solution of nonlinear equations is generally not known, so it is determined approximate methods. 
Presented below linearization method can estimate the accuracy of the solution. 

1. Linearization

The differential equation of the form: 

, (1.1)

is frequently used in technique to determine the dynamics of the system. For example, the motion 
of a material point of unit weight, caused by the force F(t), in an environment resisting R as a 
function of velocity y is described by the equation (1.1). 

Arc of the curve with equation: 

, (1.2)

in the interval will be replaced by its tangent St and secant Sc parallel to the tangent, 
as shown in Fig. 1.1. 
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Fig. 1.1. Selected arc curve linearization 

 

Because the secant 
 , (1.3) 
where: 

 , (1.4) 

 
passes through the points A( ) and B( ), hence: 

 . (1.5) 
Tangent: 

  (1.6) 

has the curve(1.1) a common point C( ). At this point the derivative of the curve (1.1) and 
tangential (1.6) have the same value, thus: 

 . (1.7) 
Because: 

 , (1.8) 
from here: 
 . (1.9) 

Equation (1.1) after replacing in the arc of the curve (1.2) in the range the secant 
(1.3) and tangential (1.6) is limited by two equations: 

 , (1.10) 

 , (1.11) 

on the solutions: 
 , (1.12) 

 . (1.13) 

For the initial condition the integral have the form: 

  (1.14) 
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 . (1.15) 
The difference solutions to equations (1.12) and (1.13) are: 

 . (1.16) 

After taking into account relationships (1.14) i (1.15) the equation takes the form: 

 , (1.17) 

where: 
 . 

Unknown exact solution of equation (1.1) in the range of   is between approximate 
solutions (1.12) and (1.13). The difference between the solutions (1.17), or the approximate 
solution error decreases with decreasing ratio (b-B)/a. This error can be determined without 
solving equations (1.10) and (1.11), using the values of the coefficients a and b secant (1.3) and 
the coefficient B of the tangent (1.6). Shortening the interval or spreading it on the 
sub-intervals reduces the value of the difference (1.17). Now, however, be calculated constant d 
and D for each of the subintervals. 

 

2. Selected examples of calculation 
 

2.1. Example 1 
 

Find an approximate solution of the equation: 

 , (2.1) 
in the range: 
 . (2.2) 

Arc of the curve   in the range    from equation (1.3) and (1.6) 
reduce: 
secant , (2.3) 
and tangent . (2.4) 

Equation (2.1), by replacing a arc curve by secant legs (2.3) and the tangent (2.4) is limited by 
two approximate equations in the range (2.2): 
 , (2.5) 
 . (2.6) 

The solutions of equations (2.5) and (2.6) are the following: 
 , (2.7) 
where y(t=0)=4 and d=2.984, 
 , (2.8) 

where D=2.534. 
Table 2.1 shows the values y by the formula (2.7), Y by (2.8), 2  according to (1.17),  

y r = y + , the exact solution yd according to the relationship: 

 , (2.9) 

and the value of . 

The results of calculations contained in Tab. 2.1 show that an approximate solution of equation 
(2.1) in the interval (2.2) is affected by a relatively large margin of error. For example, for t=2 the 
value of error is 12%: 

and for t=0.2,   . 
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Tab. 2.1. Results of calculations 

t 
[s] y Y 2  y r yd  

[%] 
0.10 2.819887 2.990883 0.177061 2.908418 2.93140 3.04 
0.20 2.105752 2.386528 0.284454 2.247979 2.34770 6.32 
0.35 1.531041 1.901105 0.371802 1.716942 1.85917 10.82 
0.50 1.270942 1.683183 0.413062 1.477473 1.59496 13.97 
0.65 1.164202 1.596366 0.432552 1.380478 1.45027 15.66 
0.80 1.134654 1.576229 0.441758 1.355533 1.38093 16.29 
1.00 1.156106 1.603007 0.446968 1.379590 1.36900 16.19 
1.20 1.215397 1.664256 0.448885 1.439839 1.42420 15.58 
1.50 1.347650 1.797396 0.449751 1.572526 1.59528 14.30 
2.00 1.656135 2.106115 0.449980 1.881125 2.01618 11.96 
3.00 2.576001 3.026001 0.450000 2.801001 3.00011 8.03 
4.00 3.896000 4.346000 0.450000 4.121000 4.00000 5.45 

 

In order to obtain greater accuracy of the solution interval (2.2) is divided into three 
subintervals: 

 . (2.10) 

In these ranges secant equation (1.3) and tangential (1.6) are the following: 

  (2.11) 

  (2.12) 

Differential equations (2.5) and (2.6) for the interval  take the form of: 

  (2.13) 

  (2.14) 

They have the following solutions: 

 , (2.15) 

where y(t=0)=4 and d1=2.4907; 

  (2.16) 

where D1=2.3241 
From equation (1.17) for the range  estimate error solutions: 

 . (2.17) 

For the whole range  error was: 

 . 

Table 2.2 shows the values y1 according to formula (2.15), Y1 by (2.16), 2 1 according to 
(2.17), y1 r = y1 + 1, the exact solution yd according to formula (2.9) and the value of 

. 
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Tab. 2.2. Values according to formula (2.15) 

t 
[s] y1 Y1 2 1 y1 r yd 1 

[%] 
0.05 3.352054 3.395300 0.043197 3.373653 3.37547 0.64 

0.10 2.872296 2.947530 0.075198 2.909895 2.93140 1.29 

0.15 2.517319 2.616251 0.098905 2.566772 2.60123 1.92 

0.20 2.254999 2.371487 0.116468 2.313233 2.34770 2.51 

0.25 2.061537 2.191031 0.129478 2.126276 2.14823 3.04 

0.269766 2.000001 2.133651 0.133637 2.066819 2.08098 3.23 

0.328201 1.856600 2.000014 0.143405 1.928302 1.91236 3.71 
 

Differential equations for the other two sub-interval  of the form: 

 , (2.18) 

  (2.19) 

have solutions: 

 , (2.20) 

 . (2.21) 

Table 2.2 is given final condition y1(t1k=0.269766)=2.0000, which is also the initial condition 
for the second sub-interval, i.e.: 

 . (2.22) 

However  is not a condition for the end of the first sub-
interval and the beginning of another. Here is the formula (2.14) determine the value of t1k = t2p , 
for which Y1k = Y1p = 2.0000. This amounts to t1k=t2p = 0.3282. Now you can set another fixed 
differential equations: 

  (2.23) 

  (2.24) 

  (2.25.) 

The calculations for the sub-interval  are shown in Tab. 2.3. 
Differential equations (1.10) and (1.11) for the range  have the same form as (2.13) 

and (2.14) but their solutions are different from the solutions (2.15) and (2.16) the constant value 
of d i D: 
 , (2.26) 

 ,  (2.27) 

 , (2.28) 

 , (2.29) 

 . (2.30) 
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Tab. 2.3. Calculations for the sub-interval  

t 
[s] y2 Y2 2 2 y2 r yd 2 

[%] 
0.269766 2.000001 2.176689 - - 2.08098 - 
0.328201 1.844918 2.000000 0.008527 1.849182 1.91236 0.23 

0.35 1.794623 1.942625 0.011322 1.800284 1.85917 0.31 
0.50 1.537874 1.648516 0.026067 1.550907 1.59496 0.84 
0.65 1.397085 1.484609 0.035190 1.414680 1.45027 1.24 
0.80 1.333411 1.406630 0.040836 1.353829 1.38093 1.50 
1.00 1.328319 1.390563 0.045168 1.350903 1.36900 1.67 
1.20 1.385349 1.441805 0.047452 1.409075 1.42420 1.68 
1.50 1.551377 1.603849 0.049024 1.575889 1.59528 1.55 
1.80 1.791244 1.842191 0.049626 1.816058 1.83476 1.36 

1.964085 1.949440 2.000000 0.049779 1.974329 1.98275 1.26 
2.012910 2.000004 2.050483 - - 2.02827 - 

 
The calculations for the sub-interval  are shown in Tab. 2.4. 
 

Tab. 2.4. Calculations for the sub-interval  

t 
[s] y3 Y3 2 3 y3 r yd 3 

[%] 
1.964085 1.945593 2.000000 - - 1.98275 - 

2.012910 2.000000 2.082914 0.042323 2.021162 2.02827 1.04 

2.50 2.408124 2.570285 0.159977 2.488113 2.50170 3.21 

3.00 2.842398 3.008840 0.166334 2.925565 3.00011 2.84 

3.50 3.356472 3.523127 0.166650 3.439797 3.50000 2.42 

4.00 3.953703 4.120369 0.166666 4.037036 4.00000 2.06 
 

 
Fig. 2.1. Course exact solution yd of the equation (2.1), approximate solution y i Y for the interval  , and y1 

i Y1 , y2i Y2 , y3 i Y3 for the intervals ; ;  
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Summary 
 

The presented examples of non-linearity parabolic solutions. This type of equation are 
described for example, in a linear motion of the ship where the resistance of the hull is a function 
of non-linear. That method can be extended to the non-linearity of any exponent, which shows the 
changing conditions of swimming. Model ship motion can be linearized, for example, in a speed 
range of maneuverability and the sea. The selected intervals may be divided into sub-
compartments to provide the required accuracy of the model. Linearization of the model allows the 
use of fuzzy logic. The shortest division of the speed is maneuverability speed and  sea speed of 
ship. 
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