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Abstract

The paper shows the successive steps of approximation of Picard unification for the solution of the non-isothermal 
fluid flow in thin layer including inertia forces and apparent viscosities described by the non-linear dependences. In 
this paper is presented a unified semi analytical method of solution of the asymmetrical, laminar, steady and unsteady, 
non-Newtonian lubrication problem flow between two non-rotational in general, convex, differentiable and movable 
surfaces when the time t depended gap between mentioned surfaces has quite an arbitrary geometry. The presented 
considerations relate not only to the rotational cooperating surfaces but also to the arbitrary non-rotational surfaces 
in general. The parallel and longitudinal intersections of mentioned surfaces are curvilinear and non-monotone in 
general. We consider the non-Newtonian lubricant for non-linear constitutive equations taking into account Reiner 
Rivlin power law relationship as well Rivlin-Ericksen formula for viscoelastic fluids. 

The non-Newtonian properties create non-linear dependencies between strain and stress. Moreover, the dynamic 
viscosity or apparent dynamic viscosity of numerous lubricant liquids with various additions often decreases along 
with shear rate increasing during motion. Dynamic viscosity of lubricant fluids inside very thin micro and nano 
boundary layers depends on Young’s modulus of the cell of surface body being in contact with the fluid. 
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1. Introduction and General Basic Equations 

The problem Pickard method of solution of lubrication problem had been considered already in 
Authors papers [7, 9]. In mentioned considerations, the computational model had been not 
accommodated to the curvilinear coordinates in non-isothermal flow and had been not coupled 
with the unified calculation algorithm. In contrary to the foregoing papers [7, 9] the presented 
paper utilizes a new unified Pickard calculation algorithm not only for Reiner-Rivlin power law of 
non-Newtonian lubricant but also for Rivlin-Ericksen viscoelastic oil properties. Such algorithm 
satisfies stability conditions of numerical solutions of partial differential equations and gives real 
values of fluid velocity components and carrying capacities occurring in journal bearing.  

The Picard-unification of semi analytical method of solutions of non-Newtonian lubricant flow 
in thin layer gap between two cooperating surfaces is related to Reiner Rivlin power law 
relationship as well Rivlin-Ericksen formula for visco-elastic fluids. The analysis of the flow for 
the viscous fluid flow will be performed by means of the following basic equations [1, 3]: 

 equation of continuity: 

/ t +div( v)= 0,  (1) 

 equation of motion: 
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Tc
dt

d
DivdivTgraddiv vSvvS . (3) 

where:
t  time,  
v  lubricant fluid velocity vector with components vi,

 fluid density,  
T  temperature,  
cv  fluid specific heat,  

 fluid thermal conductivity,  
S  stress tensor,  
div  vector divergent,  
Div  tensor divergent. 

The fluid density  and apparent fluid viscosity p are variable in ( 1, 2, 3) directions and 
depend on pressure, temperature and flow shear ratio. The inertia forces are taken into account. 

2. Unification attempt of constitutive dependencies 

The relationship between stress tensor S and displacement velocity tensor Td=A1 i.e. 
constitutive equations are as follows [3]: 

 S= p + pA1, (4)

whereas unit tensor , strain tensor A1 have following components: ij, ij. We introduce the 
following notations: ij  Kronecker Delta, p  apparent dynamic viscosity of non-Newtonian 
fluid in Pas, p  pressure in Pa. 

For Rivlin-Reiner fluid the apparent viscosity p has the following form [1, 13]: 
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where I1, I2 in s 1, s 2 are the known invariants of displacement velocity tensor ij in s 1,
n  dimensionless flow index, m=m(n)  fluid consistency coefficient in Pasn, eijk  tensor Levi-
Civity.

Rivlin-Ericksen model viscoelastic properties of lubricant fluids are described by means of 
Rivlin-Ericksen constitutive relations. Hence their stress-strain dependencies have the following 
form [2, 3, 13]: 

S= p + 0A1 + (A1)
2 + A2 , (6) 

where A1, A2 velocity deformation tensors in s 1, s 2.
We can find such tensor X, which satisfies matrix equation: A2=X A1. Hence the dependence 

(6) we can be written in the following approximate form:  

S= p  +A1( 0 + A1 + X), (7) 

where the apparent viscosity pe can be written in the form [3, 11]:

,trtr, XAXA 11 opepop  (8) 

where:

 A1  L + LT, A2  grad a + (grad a)T + 2LTL, a L v +
t

v
, (9) 

whereas:
A1 tensor of deformation of the first kind [s 1],
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A2 tensor of deformation of the second kind [s 2],
trA1 trace of tensor A1,
L tensor of gradient of fluid velocity vector [s 1],
LT transpose tensor of gradient of fluid velocity vector [s 1],
a acceleration vector [m/s2],

first pseudo-viscosity experimental coefficient of the fluid [Pas2],
second pseudo-viscosity coefficient of the fluid [Pas2],

0 dynamic viscosity of motionless fluid or for the very slow movement of fluid [Pas],  
dynamic viscosity of fluid in large motion [Pas],

pe apparent viscosity of liquid [Pas]. 
Majority of the experiments performed on the lubricant fluids indicate that dynamic viscosity 

decreases along with shear rate increasing [8, 10]. Hence by virtue of the obtained experimental 
data and using the least square methods, we can express the viscosity -shear rate relation in the 
following form [8, 10]: 

)(tr)(tr)(tr)(tr1
),( 0

2111 AAAA BBA
BApe

, (10) 

where: the coefficient A, experimentally obtained, reaches values from 8·10-6s to 6·10-4s, and the 
coefficient B most often attains values from 1·10-10 s2 to 2·10-9 s2.

3. Thin layer boundary simplifications 

The solutions are made in local curvilinear and orthogonal coordinate system ( 1, 2, 3)
connected with the one of movable surfaces, where 2 denotes the direction of hap height as 
indicated in Fig. 1a. The distance h( 1, 3, t) between two surfaces is significantly smaller than 
other dimensions of indicated surfaces. The components of the displacement vector dr are 
indicated in Fig. 1b. We have assumed that the fluid velocity components in 1, 3 directions have 
the same order of greatness [7, 9]. 

Fig. 1. Geometry of the region: a) two cooperating non-rotational surfaces, b) curvilinear orthogonal coordinates 
system

According to the thin boundary layer simplifications the square of the element of length in the 
flow region is determined as follows: 
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are the Lame` coefficients in thin boundary layer depending on the shape of non-rotating surface in 
general. For rotational surfaces h1=h1( 3), h3=h1( 3). The local curvilinear and orthogonal 
coordinates system ( i) connected with the lower surface is presented in Fig. 2. 

Fig. 2. Orthogonal curvilinear system connected with the surface, ei versors in curvilinear coordinates, n normal 
vector

4. Non –Linear Basic Equations after thin layer boundary simplifications 

Expanding equations (1)-(3) in I (i=1,2,3) directions, taking into account layer boundary 
simplifications, we obtain the following system of non-linear basic partial differential equations 
describing the lubrication of two curvilinear non-rotational surfaces [1-4]: 

Equation of continuity: 

,013
3

312
2

31
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31 hvhhvhvhh
t

(13)

Equation of motion: 
For Reiner-Rivlin and Rivlin-Ericksen in equation of motion we have respectively: 
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Equation of energy: 
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where for i=1,3 we have: 
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For Reiner-Rivlin and Rivlin-Ericksen we have respectively: p(v1,v3,n), or p(v1,v3, , ). The 
unknown functions are: velocity components v1, v2, v3, pressure p, temperature T. 

.

,
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5. Linearization of apparent viscosity and provided solutions using small parameter method 

For Rivlin-Reiner power law fluid the solutions were defined in following form of uniformly 
convergent power series developed in terms of small parameter [6, 7]: 
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for i=1,2,3; j=0,1,2,…  where 0<n 3/2 thus the small parameter  is less then 

+1/4 and greater than 1/2. In order to attain the linearization of apparent viscosity (5), after 
boundary simplifications we expand function in closed interval [1,n] or [n,1] for 0<n 3/2 using 
Taylor series in neighbourhood of point n=1 with respect to the small parameter in following form 
[7, 9]:
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where: 0  characteristic value of classical dynamic viscosity, prj  dimensionless expansion 
coefficients for j=0 we have pr0 1 and dimensionless prj prj(v1,v3) for j=1,2,... . 

For Rivlin-Ericksen type of non-Newtonian fluid the solutions were defined in following form 
of uniformly convergent power series developed in terms of small parameter [10]: 

(19)
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where: i=1,2,3; j=0,1,2,… ,  angular velocity of journal, D  Deborah number.  
Now we expand viscosity function in open interval 1<D<1 using Taylor series in 

neighbourhood of point D=0 with respect to the small parameter in following form:  

.......1,,, 1031 pej
j

pepep DDvv  (21.1) 

where: 0  characteristic value of classical dynamic viscosity, pej dimensionless expansion 
coefficients whereas for j=0 we have pe0 1 and dimensionless pej pej(v1,v3) for j=1,2,... [13]:
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6. Solution of the system of partial basic equations as terms of series 

Putting series (17), (18) or (20), (21) into the system of non-linear equation (13), (14), (15) and 
multiplying the series by Cauchy method, equating the coefficients of the like powers of small 
parameters, we obtain a sequence of following systems of non-linear (for Xij 0), or linear (for 
Xij=0) partial equations [9, 12]: 
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for i=1,3; j=0,1,2,…, (1+2 / )  where
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where pj= prj or pj= pej.
Analogically we obtain functions: Z0, Z1, … . System of Eqs.(22)-(25) for Xij=0, Zj=0

determines following unknown functions: v1j, v2j, v3j, pdj, Tdj for i=1,3; j=0,1,2,... .
Since the two cooperating surfaces are moving, and there can be slip, hence the boundary 

conditions (for i=1,2,3; j=0,1,2,…) have the following form [5, 7, 9]: 

),,,(),,0,( 310321 tUtv ijij (27)

),,,(),,,( 310321 tUthv ipjij (28)

where j0 denotes Delta Kronecker Symbol. Velocities and slips on the journal and sleeve surface
Ui 0, Uip 0 can be continuous, constant or variable but not arbitrary in general.  
– We put j=0, Si0=F0=0 in system (22)-(25). Hence system determines basic functions: 

v10, v20, v30, pd0, Td0 . (29.0) 

– We put j=1, Si0=F0=0, S11, F1, G1 and solutions (29.0) in system (22)-(25). Hence system 
determines following correction functions: 

v11, v21, v31, pd1, Td1 i.e. Dv11, Dv21, Dv31, Dpd1, DTd1. (29.1)

– We put j=2, Si0=F0=0, Si1, F1, G1, Si2, F2, G2, and solutions (29.1) in system (22)-(25). Hence 
system next correction functions:  

v12, v22, v32, pd2, Td2 i.e. D2v12, D
2v22, D

2v32, D
2pd2, D

2Td2. (29.2)  

– After J steps we obtain final corrections: 

v1j, v2j, v3j, pdj, Tdj i.e. DJv1J, D
Jv2J, D

Jv3J, D
JpdJ, D

JTdJ (29. )

7. The method of Picard successive approximation steps of solutions of basic equations 

When we are neglecting the inertia forces i.e. Xij=0 and convection transport of energy as well 
pressure dissipation i.e. Zj=0, then linear set of partial differential equations (22)-(25) gives 
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following solutions (29.0), (29.1), …, (29.j) namely: 
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for i=1,3; j=0,1,2,… . 
In partial differential equations (22)-(25) we are replacing the inertia forces i.e. Xij and 

convection transport of energy as well pressure dissipation i.e. Zj, by functions (31). Hence such 
linear set of partial differential equations (22)-(25) gives following solutions:  

  for j=0,1,2,… .  (32) )1()1()1(
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We put functions (32) into terms  i.e.: jij Z,X
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for i=1,3; j=0,1,2,… . 
In partial differential equations (22)-(25) we are replacing the inertia forces i.e. Xij and 

convection transport of energy as well pressure dissipation i.e. Zj, by functions (33). Hence such 
linear set of partial differential equations (22)-(25) gives following solutions: 
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After k steps inertia force terms and convection transport terms for i=1,2,3; j=0,1,2,… go to the 
form: 
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whereas linear set of partial differential equations (22)-(25) gives following solutions: 
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If for sufficient many steps and negligibly small value  are valid following inequalities:  
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then for i=1,2,3; j=0,1,2,… are valid following limits 
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i.e. solutions (36) have final form. 

8. Conclusions 
In this paper, the Lipschitz Picard’s method of successive approximations of solutions of 

hydrodynamic lubrication problem is presented for the non-linear fluid mechanics equations that 
describe non-Newtonian fluid flow using Reiner-Rivlin and Rivlin Ericksen model describing non-
linear apparent lubricant viscosity. The convergence process of the sequence of succeeding 
approximation solutions has been considered. 

References 

[1] Astarita, G., Marrucci, G., Principles of non-Newtonian fluid mechanics, McGraw Hill Co, 1974.  
[2] Miszczak, A., Analiza hydrodynamicznego smarowania ferrociecz  poprzecznych o ysk

lizgowych, Fundacja Rozwoju Akademii Morskiej w Gdyni, dysertacja habilitacyjna, 2006. 

489



K. Wierzcholski 

[3] Truesdell, C. A., First Course in Rational Continuum Mechanics, John Hopkins Univ., 
Baltimore Maryland 1972. 

[4] Walicki, E., Ruch p ynów lepkich w szczelinach wzd u nych o ysk lizgowych,
Wydawnictwo Uczelniane ATR Bydgoszcz, Mechanika, Z. 18 (50), Bydgoszcz 1977. 

[5] Weinberger, H., Fo., A First Course In Partial Differentia Equations, John Willey & Sons, 
New York, Toronto, Singapore 1965. 

[6] Wierzcholski, K., Czajkowski, A., On the small parameter methods for the integration of non 
linear system of equations of the laminar non-Newtonian fluid flow in the thin layer on the 
rotating surface, Folia Scientis Scientiarum Lubliniensis, Mat-Fiz-Chem, Vol. 31, 1-2, 
pp. 9-16, 1989. 

[7] Wierzcholski, K., The Method of Solving of the System of non-Linear Differential Equations 
for non- Isothermic Laminar non-Newtonian Flow in the Thin Layer Between Two Certain 
Surfaces, Scientific Papers of the Institute of Machine Design and Operation Studies and 
Research: The boundary integral equation method in fluid mechanics, Technical University 
of Wroclaw, No. 59, Ser.: No. 26, pp. 134-144, 1993. 

[8] Wierzcholski, K., The method of solutions for hydrodynamic lubrication by synovial fluid 
flow in human joint gap, Control and Cybernetics, Vol. 31, No. 1, pp. 91-116, 2002.

[9] Wierzcholski, K., Estimation of solutions of basic equations for non Newtonian fluid flow in 
a film between two non- rotational surfaces. Rev. Roum. des Sci. Tech., Ser. de Mec. Appl. 
Editura Acad. Roum., No. 1-2, T. 36, pp.103-122, 1991.  

[10] Wierzcholski, K., Comparisson Between Impulsive and Periodic Non-Newtonian Lubrication 
of Human Hip Joint, Engineering Trans., 53, 1, pp. 69-114, 2005. 

[11] Wierzcholski, K., Bio and slide bearings: their lubrication by non-Newtonian fluids and 
application in non conventional systems, Vol.III: Tribology process for chondrocytes,human 
joint and micro-bearing, Monograph, Published by Krzysztof Wierzcholski, Gdansk 
University of Technology, pp. 1-129, Gda sk 2006-2007. 

[12] Wierzcholski, K., Mathematical implementation into computer calculations for micro-
bearing capacities, XIII Journal of Applied Computer Science, Vol. 18, No. 1, pp. 117-135, 
2010.

[13] Wierzcholski, K., Computer Simulations of Short Radial Bearing Capacity for Rivlin 
Ericksen Oils. SAMS, System Analysis Modelling and Simulations OPA Overseas 
Publishers. Association N.V., Vol. 33, pp. 219-238, 1998.

490




