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Abstract 

 The paper presents results of investigation on the method of determination of significant properties in the case of 
virtual computational objects like FEM models. Typical approach is very time-consuming and involves the sequence 
of meshing and high performance computing. The method proposed in the paper is time-saving by utilization of the 
experimental design methodology, in particular the screening design analysis. The analysis based on Plackett-Burman 
designs and fractional factorial designs is focused on the maximum cost reduction. It provides to the main effects 
analysis. In the mentioned case of the virtual computational object it allows determining significant properties of the 
model and to focus on the selected most important parameters affecting the key properties of the object. Time-saving 
is obtained by eliminating insignificant factors from the study area. The mathematical basis for this approach is well 
known from the experimental design area, and the novelty is the use of it to the particular deterministic computational 
object. Specific metrics are defined for approximation accuracy, computational cost and their relationship to show the 
benefits of the method. Identification was carried out in two ways. The first method is used when the two elements are 
available: the set of output feature values obtained experimentally and chosen error criterion for comparing the 
predicted and measured values of output characteristics. The second method requires a binding equation or 
equations, which must be satisfied. 

Keywords: modelling, screening design, effects analysis 
 
1. Introduction  
 

Continuously increasing of modern processors’ computing power and capacity of operating 
memory are the reason of more detailed and precise computational models, and the reason of their 
increasing complexity. Because of that complexity, simulation research of computational models 
is more and more resource and time consuming. One of the fundamental element of the 
investigation is to estimate the sensibility of the selected model’s property related to small changes 
of its significant parameters and then to order these parameters according to descending influence 
on the investigated property. 

In traditional approach it is provided by identification of the first-order derivatives of the 
selected property with respect to analyzed parameters i.e. by evaluation of the property’s gradient. 
The symmetric finite difference scheme is typically involved to evaluate the gradient and (2n+1) 
star points are required, where n is a number of analyzed model’s parameters. The relationship of 
the number of points from the number of parameters is linear, what is already very favourable in 
view of the cost calculation, but it appears that it is possible to further reduce the number of points 
with the method proposed in the design of experiment methodology [1]. This way the information 
is obtained at significantly reduced workload. 
 
2. Proposed method of procedure 
 

The method described below is a general outline of the proposal dealt with computational models as 
objects of research and utilization of screening experimental designs (Plackett-Burman and fractional 
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factorial) to identify and rank the value of the average effects. These in turn will help to determine these 
parameters which are the most affecting the results obtained from the model. The set of test function 
was used during the verification of the proposed approach. The functions were used as examples of the 
computational models. A large set of multidimensional test points was constructed randomly in the 
domain of the test function and then each point was used as a centre point for a locally settled 
experimental design. Next, the outcome of the test function was identified for all cases of experimental 
design as a simulated equivalent of measurement process. For the given outcome values, the linear 
model of main effects was identified and the values of the effects were determined. Simultaneously, the 
estimates of first order derivatives were evaluated for the design’s centre points basing on the finite 
difference scheme and the main effects were evaluated alternatively. Supplementary, the derivatives 
were evaluated analytically from the gradient of the test function and the main effects were evaluated in 
the third way. The comparative analysis was made with the values of the effects. 
 
2.1. Description of the investigated object 

 
The computational model is a mapping, which forecasts values of some properties of the 

physical object basing on the values of other properties of the object. It may symbolically express 
by formula (1): 
 , (1) M : P C
where: 
M - mapping being the computational model, 
P - the set of input variables (factors) of the model, 
C - the set of output properties of the model. 

The cardinality of P set depends on the level of model’s details. This set contains parameters 
describing modelled object, its environment and parameters describing the model itself (2): 

 O MP P P , (2) 
where: 
PO – the set of parameters describing properties of the physical object and its environment, 
PM – the set of parameters describing properties of the model (e.g. number of mesh’s nodes). 

Determination of the appropriate values for PM parameters proceeds in the model’s 
identification process. Identification is carried out in two ways. The first method is used when the 
two elements are available: the set of output feature values obtained experimentally and chosen 
error criterion for comparing the predicted and measured values of output characteristics. The 
method is based on to minimize the error criterion in the space of model parameters (3): 

 M1 exp O M pF (c , M(p , p )) min ,
 (3) 

where: 
F1 - error criterion to minimize, 
cexp - output values obtained experimentally, 
M - the mapping representing the computational model, 
pO - values of the parameter describing properties of the physical object and its environment, 
pM - values of the parameters describing model’s properties. 

The second method requires a binding equation or equations, which must be satisfied. 
Normally this is to minimize some criterion of error dependent on residuals of binding equations 
(4) in the space of model’s parameters: 

 M2 O M O M pF (p , p , M(p , p )) min ,
 (4) 

where: 
F2 - error criterion to minimize, 
M - the mapping representing the computational model, 
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pO - values of the parameters describing properties of the physical object and its environment, 
pM - values of the parameters describing model’s properties. 

This way is characteristic, among others, for FEM models, where a typical task for the 
assumed loads shall designate a field of stresses and strains. 
 
2.2. The identified model 

 
As a basis for further work a linear model of main effects was assumed [1] (5): 

 

n

ME 0 0
1

c (b , b , p ) b b pi i i i
i

,
 (5) 

where: 
cME - the model of main effects forecasting the selected output property of the analyzed 

computational model, 
b0 - the intercept of the main effects model, 
bi - coefficient of the main effects model associated with the i-th input parameter, 
pi - i-th input parameter of the analyzed computational model, 
n - number of input parameters included in the calculation model. 

In this way the model (5) becomes a local approximation of the analyzed computational model 
(1) after proper identification of the coefficients. 
 
2.3. Test functions 

 
Analysis was conducted using two test functions: Rastrigin’s and Trid. These functions are 

representative of a wider group of so called difficult functions used to test different optimization 
techniques. 

Rastrigin’s function provides the features of the object without interaction between the input 
variables. The original form defined for two variables was given by Rastrigin in 1974 [4], widely 
propagated in 1989 by Törn and Zilinskas [5], and then in 1991, generalized to the case of multi-
dimensional by Mühlenbein, Schomisch and Born [3]. A model function (6) is defined for any 
number of independent variables, and the domain (7) is a fixed size hyper-cube: 

 
,
 (6) 

2
R

1
c (n, p ) 10n (p 10cos(2 p ))

n

i i
i

i

n

i

 
,
 (7) 5.12 p 5.12 1i i

where: 
cR - Rastrigin’s function simulating the computational object, 
n - number of input parameters of computational object, 
pi - i-th input parameter of the computational object. 

Trid function being modification of the tridiagonal Broyden function [2] provides 
characteristics of object having interactions between the input variables. A function formula (8) is 
defined for any number of independent variables, and the domain (9) is hyper-cube of variable size 
depending on the number of input parameters: 

 
2

T 1
1 2

c (p ) (p 1) p p
n n

i i i
i i

,
  (8) 

 
,
 (9) 

2 2n p n 1i i n
where: 
cT - Trid function simulating computational model, 
n - number of input parameters of the computational model, 
pi - i-th input parameter of the computational model. 
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2.4. Comparative measures 
 
The result of computations is vectors of the effects evaluated for each input parameter of the 

model. The effect is defined as the difference in response for the opposed values of the analyzed 
parameter, with the average settings of other parameters. In the case of the main effects model (5), 
this takes the form of equation (10): 

  
(10)

 
DOE ME ME

ˆ ˆp 0 p 0
Eff c c , 1 , 1 ( 1), ( 1) ,

ˆ ˆp 1 p 1
j j

i
i i

i n j i i n

n

where: 
cME - the main effects model (5), by which the effect of i-th parameter is calculated, 
p̂i  - i-th parameter coded according to DOE methodology, 
EffDOE i - absolute effect calculated for the i-th parameter. 

In the case of the traditional difference scheme, it is a two-point system, where the effect is 
directly determined as the difference of responses (11) of the analyzed computational model (1) 
for the next and previous node: 

  
(11)

 
Trd

p xc p xc
Eff c c , 1 , 1 ( 1), ( 1) ,

p xc h p xc h
j j j j

i
i i i i i i

i n j i i

where: 
c - analyzed computational model, 
xcj - real (uncoded) centre value of the i-th parameter, 
hj - real (uncoded) value corresponding to the difference between an encoded value and 0 for 

the j-th parameter; the traditional nomenclature is the star arm length of the finite 
difference star scheme. 

EffTrd i - absolute effect evaluated by finite difference for the i-th parameter. 
In the case of an analytical gradient test function effect is calculated as twice the differential for 

the corresponding increment of the parameter (12): 

 

Test
Grd

c p
Eff 2h , 1

p
j j

i i
i p xc

i j n , (12)
 

where: 
cTest - considered test function, 
xcj, hj - definitions same as for formula (11), 
EffGrd i - absolute effect calculated using the analytical gradient for the i-th parameter. 

The effects of individual input parameters may have different values, and thus differences in 
their values calculated by different methods may vary in the magnitude. To avoid the influence of 
scale and masking smaller effects by larger, the standardization of the individual values 
of individual effects was adopted. The components of effects were standardized individually 
related to the components of the reference vector. The effects vector calculated by traditional finite 
difference method was assumed as reference. Standardization for the effects calculated by DOE 
method is given by formula (11): 

 

Eff
Eff 1

Eff
DOE i

std DOE i
Trd i

i n , (11)
 

where: 
Effstd DOE i - effect calculated for the i-th parameter by experimental design, standardized with 
respect to effect based on finite difference, 
EffDOE i - absolute effect calculated for the i-th parameter by experimental design, 
EffTrd i - absolute effect calculated for the i-th parameter by finite difference scheme. 
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The same standardization was carried out with respect to the vector calculated by the 
differential effects and supplied a vector with all components equal to value 1 (12): 

 Eff 1 1std Trd i i n . (12) 
The measure D1 of the difference between two vectors of effects is defined as dimensionless 

quotient of the Euclidean length of the standardized effects vector and the length of the reference 
vector (13):  

 

2

1
1

2

1

Eff Eff
D

Eff

n

std DOE i std Trd i
i

n

std Trd i
i

. (13)

 
Due to property (12) relationship (13) can be presented in a simplified form (14): 

 

2

1
1

Eff 1
D

n

std DOE i
i

n
. (14)

 
This measure provides information about the difference between the results obtained from two 

different methods (proposed and traditional) on the basis of data available only by numerical 
observation and the absence of information about the analytical form of the actual mapping of the 
investigated object. 

A similar measure and the standardization procedure may be performed in case of acceptance 
(in the formula (11)) as a vector of reference results calculated from the gradient (12). 
A standardization formula then becomes (15): 

 2

Eff
Eff 1

Eff
DOE i

std DOE i
Grd i

i n , (15) 

where: 
Effstd2 DOE i - effect calculated for the i-th parameter using experimental design, standardized with 
respect to the effect calculated from the gradient, 
EffDOE i - absolute effect calculated for the i-th parameter using experimental design, 
EffGrd i - absolute effect calculated for the i-th parameter using analytical gradient. 

The measure D2 of the difference between two vectors of effects is defined as dimensionless 
quotient of the Euclidean length of the standardized effects vector and the length of the reference 
vector (gradient-based vector of effects) (16):  

 

2

2
1

2

Eff 1
D

n

std DOE i
i

n
. (14) 

This measure provides information about the difference between the results obtained from the 
proposed method and actual properties of the investigated object (the test function in such case). 
 
3. Results of numerical studies 
 
3.1. Studied experimental designs 

 
Experimental design listed in Tab. 1. were admitted to the numerical studies. These designs 

vary depending on the number of input factors. It should be noted, that Plackett-Burman designs 
are the most appropriate solution only for certain numbers of factors, while in other cases, more 
cost-effective is the use of fractional factorial designs. 
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Tab. 1. Experimental designs used for calculation 

No. Number of 
factors Number of runs Number of runs 

(traditional) Symbol Description 

1. 2 4 5 2**2 full factorial design 

2. 3 4 7 2**(3-1) fractional factorial design 

3. 4 8 9 2**(4-1) fractional factorial design 

4. 11 12 23 P-B n=12 Plackett-Burman design 

 
3.2. The results obtained for Rastrigin’s test function 

 
The base for numerical studies was experimental designed, listed in Tab.1. The population of 

1000 centre points was randomly generated in the domain of the Rastrigin’s test function. As the 
spread of the experimental design (coded values -1 and +1), the ranges 10%, 20% and 30% were 
assumed related to the size of the Rastrigin’s test function domain. The means, medians and 
quantiles 0.975 for D1 and D2 distributions were empirically determined for generated 
experimental designs. The results obtained for D2 are presented in Tab. 2. The values obtained for 
D1 have magnitude 10-12 and thus have been omitted. 
 
3.3. Results obtained for Trid test function 

 
The base for numerical studies was experimental designs listed in Tab.1. The population of 

1000 centre points was randomly generated in the domain of the Trid test function. As the spread 
of the experimental design (coded values -1 and +1), the ranges 1%, 2% and 3% were assumed 
related to the size of the Trid test function domain. The means, medians and quantiles 0.975 for D1 
and D2 distributions were empirically determined for generated experimental designs. The results 
obtained for D1 are presented in Tab. 3. and for D2 in Tab. 4. 
 

Tab. 2. Descriptive statistics of D2 for the object simulated by Rastrigin’s function 

Design range 
Descriptive statistics 10% 20% 30% 

i = 2, design: full factorial 2**2 
Mean 0.020 0.090 0.210 
Median 0.017 0.066 0.144 
0.975 quantile 0.058 0.297 0.610 

i = 3, design: fractional factorial 2**(3-1) 
Mean 0.023 0.092 0.193 
Median 0.017 0.066 0.144 
0.975 quantile 0.044 0.261 0.529 

i = 4, design: fractional factorial 2**(4-1) 
Mean 0.030 0.116 0.219 
Median 0.017 0.067 0.149 
0.975 quantile 0.106 0.250 0.718 

i = 11, design: Plackett-Burman n=12 
Mean 0.022 0.091 0.204 
Median 0.017 0.067 0.146 
0.975 quantile 0.063 0.365 0.720 
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Tab. 3. Descriptive statistics of D1 for the object simulated by Trid function 

Design range 
Descriptive statistics 10% 20% 30% 

i = 2, design: full factorial 2**2 
Mean ~10-13 ~10-13 ~10-13 
Median ~10-13 ~10-13 ~10-13 
0.975 quantile ~10-13 ~10-13 ~10-13 

i = 3, design: fractional factorial 2**(3-1) 
Mean 0.029 0.066 0.099 
Median 0.011 0.024 0.032 
0.975 quantile 0.189 0.457 0.606 

i = 4, design: fractional factorial 2**(4-1) 
Mean 0.020 0.034 0.046 
Median 0.004 0.009 0.013 
0.975 quantile 0.085 0.153 0.255 

i = 11, design: Plackett-Burman n=12 
Mean 0.093 0.170 0.283 
Median 0.029 0.059 0.087 
0.975 quantile 0.725 1.182 2.228 

 
Tab. 4. Descriptive statistics of D2 for the object simulated by Trid function 

Design range 
Descriptive statistics 10% 20% 30% 

i = 2, design: full factorial 2**2 
Mean ~10-13 ~10-13 ~10-13 
Median ~10-13 ~10-13 ~10-13 
0.975 quantile ~10-13 ~10-13 ~10-13 

i = 3, design: fractional factorial 2**(3-1) 
Mean 0.031 0.082 0.120 
Median 0.011 0.023 0.035 
0.975 quantile 0.158 0.686 0.853 

i = 4, design: fractional factorial 2**(4-1) 
Mean 0.022 0.033 0.043 
Median 0.004 0.008 0.013 
0.975 quantile 0.138 0.168 0.328 

i = 11, design: Plackett-Burman n=12 
Mean 0.084 0.173 0.234 
Median 0.028 0.055 0.084 
0.975 quantile 0.517 1.442 1.551 

 
3.4. Discussion of results 

 
The results obtained using experimental designs can be regarded as being fully compatible with 

the differential scheme in the absence of interaction between the parameters of the computational 
model. In the presence of interactions there are differences, whose size is strongly dependent on 
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the spread of the experimental design. Differences are acceptable in the case of small spreads. This 
means that if one uses screening experimental designs to determine the effects, the spread of the 
design should be rather small and the exact ranges shall be determined individually. 
 
4. Conclusions 

 
The results obtained with the proposed method are fully consistent with the traditional method 

for the object without interaction parameters, or similar in the case of object with the interaction of 
parameters. The benefits from the proposed method increases with the number of parameters 
describing considered computational object. The accuracy of the proposed method depends on the 
spread of the used experimental design i.e. size of design space. The spread of experimental design 
should be adjusted individually to the problem. 
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